Toroidic phase transitions in a direct-kagome artificial spin ice

Toroidic phase transitions in a direct-kagome artificial spin ice


  • Van Aken, B. B., Rivera, J. P., Schmid, H. & Fiebig, M. Observation of ferrotoroidic domains. Nature 449, 702–705 (2007).

    Article 
    PubMed 

    Google Scholar
     

  • Fiebig, M., Lottermoser, T., Meier, D. & Trassin, M. The evolution of multiferroics. Nat. Rev. Mater. 1, 1–14 (2016).

    Article 

    Google Scholar
     

  • Gnewuch, S. & Rodriguez, E. E. The fourth ferroic order: current status on ferrotoroidic materials. J. Solid State Chem. 271, 175–190 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Wang, R. F. et al. Artificial ‘spin ice’ in a geometrically frustrated lattice of nanoscale ferromagnetic islands. Nature 439, 303–306 (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Nisoli, C., Moessner, R. & Schiffer, P. Colloquium: artificial spin ice: designing and imaging magnetic frustration. Rev. Mod. Phys. 85, 1473–1490 (2013).

    Article 
    CAS 

    Google Scholar
     

  • Heyderman, L. J. & Stamps, R. L. Artificial ferroic systems: novel functionality from structure, interactions and dynamics. J. Phys. Condens. Matter 25, 363201 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Rougemaille, N. & Canals, B. Cooperative magnetic phenomena in artificial spin systems: spin liquids, Coulomb phase and fragmentation of magnetism—a colloquium. Eur. Phys. J. B 92, 62 (2019).

    Article 

    Google Scholar
     

  • Skjærvø, S. H., Marrows, C. H., Stamps, R. L. & Heyderman, L. J. Advances in artificial spin ice. Nat. Rev. Phys. 2, 13–28 (2020).

    Article 

    Google Scholar
     

  • Zhang, S. et al. Crystallites of magnetic charges in artificial spin ice. Nature 500, 553–557 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mengotti, E. et al. Real-space observation of emergent magnetic monopoles and associated Dirac strings in artificial kagome spin ice. Nat. Phys. 7, 68–74 (2011).

    Article 
    CAS 

    Google Scholar
     

  • Farhan, A. et al. Direct observation of thermal relaxation in artificial spin ice. Phys. Rev. Lett. 111, 057204 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chern, G. W., Morrison, M. J. & Nisoli, C. Degeneracy and criticality from emergent frustration in artificial spin ice. Phys. Rev. Lett. 111, 177201 (2013).

    Article 
    PubMed 

    Google Scholar
     

  • Morrison, M. J., Nelson, T. R. & Nisoli, C. Unhappy vertices in artificial spin ice: new degeneracies from vertex frustration. New J. Phys. 15, 045009 (2013).

    Article 

    Google Scholar
     

  • Gilbert, I. et al. Emergent ice rule and magnetic charge screening from vertex frustration in artificial spin ice. Nat. Phys. 10, 670–675 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Gilbert, I. et al. Emergent reduced dimensionality by vertex frustration in artificial spin ice. Nat. Phys. 12, 162–165 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Farhan, A. et al. Emergent magnetic monopole dynamics in macroscopically degenerate artificial spin ice. Sci. Adv. 5, eaav6380 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hügli, R. V. et al. Artificial kagome spin ice: dimensional reduction, avalanche control and emergent magnetic monopoles. Phil. Trans. R. Soc. A 370, 5767–5782 (2012).

    Article 
    PubMed 

    Google Scholar
     

  • Ladak, S., Read, D. E., Perkins, G. K., Cohen, L. F. & Branford, W. R. Direct observation of magnetic monopole defects in an artificial spin-ice system. Nat. Phys. 6, 359–363 (2010).

    Article 
    CAS 

    Google Scholar
     

  • Anghinolfi, L. et al. Thermodynamic phase transitions in a frustrated magnetic metamaterial. Nat. Commun. 6, 8278 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Canals, B. et al. Fragmentation of magnetism in artificial kagome dipolar spin ice. Nat. Commun. 7, 11446 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sendetskyi, O. et al. Continuous magnetic phase transition in artificial square ice. Phys. Rev. B 99, 214430 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Lehmann, J., Donnelly, C., Derlet, P. M., Heyderman, L. J. & Fiebig, M. Poling of an artificial magneto-toroidal crystal. Nat. Nanotechnol. 14, 141–144 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lehmann, J. et al. Relation between microscopic interactions and macroscopic properties in ferroics. Nat. Nanotechnol. 15, 896–900 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gartside, J. C. et al. Realization of ground state in artificial kagome spin ice via topological defect-driven magnetic writing. Nat. Nanotechnol. 13, 53–58 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Rougemaille, N. et al. Artificial kagome arrays of nanomagnets: a frozen dipolar spin ice. Phys. Rev. Lett. 106, 057209 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chern, G. W., Mellado, P. & Tchernyshyov, O. Two-stage ordering of spins in dipolar spin ice on the kagome lattice. Phys. Rev. Lett. 106, 207202 (2011).

    Article 
    PubMed 

    Google Scholar
     

  • Möller, G. & Moessner, R. Magnetic multipole analysis of kagome and artificial spin-ice dipolar arrays. Phys. Rev. B 80, 140409 (2009).

    Article 

    Google Scholar
     

  • Qi, Y., Brintlinger, T. & Cumings, J. Direct observation of the ice rule in an artificial kagome spin ice. Phys. Rev. B 77, 094418 (2008).

    Article 

    Google Scholar
     

  • Tanaka, M., Saitoh, E., Miyajima, H., Yamaoka, T. & Iye, Y. Magnetic interactions in a ferromagnetic honeycomb nanoscale network. Phys. Rev. B 73, 052411 (2006).

    Article 

    Google Scholar
     

  • Oǧuz, E. C. et al. Topology restricts quasidegeneracy in sheared square colloidal ice. Phys. Rev. Lett. 124, 238003 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Perrin, Y., Canals, B. & Rougemaille, N. Quasidegenerate ice manifold in a purely two-dimensional square array of nanomagnets. Phys. Rev. B 99, 224434 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Nisoli, C. et al. Effective temperature in an interacting vertex system: theory and experiment on artificial spin ice. Phys. Rev. Lett. 105, 047205 (2010).

    Article 
    PubMed 

    Google Scholar
     

  • Schánilec, V. et al. Bypassing dynamical freezing in artificial kagome ice. Phys. Rev. Lett. 125, 057203 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Yue, W. C. et al. Crystallizing kagome artificial spin ice. Phys. Rev. Lett. 129, 057202 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hofhuis, K. et al. Real-space imaging of phase transitions in bridged artificial kagome spin ice. Nat. Phys. 18, 699–705 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Zhang, X. et al. Understanding thermal annealing of artificial spin ice. APL Mater. 7, 111112 (2019).

    Article 

    Google Scholar
     

  • Nascimento, F. S., Mól, L. A. S., Moura-Melo, W. A. & Pereira, A. R. From confinement to deconfinement of magnetic monopoles in artificial rectangular spin ices. New J. Phys. 14, 115019 (2012).

    Article 

    Google Scholar
     

  • Ribeiro, I. R. B. et al. Realization of rectangular artificial spin ice and direct observation of high energy topology. Sci Rep. 7, 13982 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Östman, E. et al. Interaction modifiers in artificial spin ices. Nat. Phys. 14, 375–379 (2018).

    Article 

    Google Scholar
     

  • Branford, W. R., Ladak, S., Read, D. E., Zeissler, K. & Cohen, L. F. Emerging chirality in artificial spin ice. Science 335, 1597–1600 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Schánilec, V. et al. Approaching the topological low-energy physics of the F model in a two-dimensional magnetic lattice. Phys. Rev. Lett. 129, 027202 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • King, A. D., Nisoli, C., Dahl, E. D., Poulin-Lamarre, G. & Lopez-Bezanilla, A. Qubit spin ice. Science 373, 576–580 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lopez-Bezanilla, A. & Nisoli, C. Field-induced magnetic phases in a qubit Penrose quasicrystal. Sci. Adv. 9, eadf6631 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lopez-Bezanilla, A. et al. Kagome qubit ice. Nat. Commun. 14, 1105 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Libál, A., Reichhardt, C. J. O. & Reichhardt, C. Creating artificial ice states using vortices in nanostructured superconductors. Phys. Rev. Lett. 102, 237004 (2009).

    Article 
    PubMed 

    Google Scholar
     

  • Latimer, M. L., Berdiyorov, G. R., Xiao, Z. L., Peeters, F. M. & Kwok, W. K. Realization of artificial ice systems for magnetic vortices in a superconducting MoGe thin film with patterned nanostructures. Phys. Rev. Lett. 111, 067001 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Trastoy, J. et al. Freezing and thawing of artificial ice by thermal switching of geometric frustration in magnetic flux lattices. Nat. Nanotechnol. 9, 710–715 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang, Y. L. et al. Switchable geometric frustration in an artificial-spin-ice-superconductor heterosystem. Nat. Nanotechnol. 13, 560–565 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ortiz-Ambriz, A. & Tierno, P. Engineering of frustration in colloidal artificial ices realized on microfeatured grooved lattices. Nat. Commun. 7, 10575 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rollano, V. et al. Topologically protected superconducting ratchet effect generated by spin-ice nanomagnets. Nanotechnology 30, 244003 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lyu, Y. et al. Reconfigurable pinwheel artificial-spin-ice and superconductor hybrid device. Nano Lett. 20, 8933 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lendinez, S. & Jungfleisch, M. B. Magnetization dynamics in artificial spin ice. J. Phys. Condens. Matter 32, 013001 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gliga, S., Iacocca, E. & Heinonen, O. G. Dynamics of reconfigurable artificial spin ice: toward magnonic functional materials. APL Mater. 8, 040911 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Gartside, J. C. et al. Reconfigurable training and reservoir computing in an artificial spin-vortex ice via spin-wave fingerprinting. Nat. Nanotechnol. 17, 460–469 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hu, W. et al. Distinguishing artificial spin ice states using magnetoresistance effect for neuromorphic computing. Nat. Commun. 14, 2562 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nadeem, M., Fuhrer, M. S. & Wang, X. The superconducting diode effect. Nat. Rev. Phys. 5, 558 (2023).

    Article 

    Google Scholar
     

  • Vansteenkiste, A. et al. The design and verification of MuMax3. AIP Adv. 4, 107133 (2014).

    Article 

    Google Scholar
     

  • Leliaert, J. et al. Fast micromagnetic simulations on GPU—recent advances made with mumax3. J. Phys. D. 51, 123002 (2018).

    Article 

    Google Scholar
     

  • Saglam, H. et al. Entropy-driven order in an array of nanomagnets. Nat. Phys. 18, 706–712 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Wang, Y.-L. et al. FigShare https://doi.org/10.6084/m9.figshare.24270862(2024).

  • Yuan, Z., Yue, W.-C. & Wang, Y.-L. Monte Carlo Simulation Programs for Direct-Kagome Artificial Spin Ice (Zenodo, 2024); https://doi.org/10.5281/zenodo.10825074

  • Deixe um comentário