Van Aken, B. B., Rivera, J. P., Schmid, H. & Fiebig, M. Observation of ferrotoroidic domains. Nature 449, 702–705 (2007).
Fiebig, M., Lottermoser, T., Meier, D. & Trassin, M. The evolution of multiferroics. Nat. Rev. Mater. 1, 1–14 (2016).
Gnewuch, S. & Rodriguez, E. E. The fourth ferroic order: current status on ferrotoroidic materials. J. Solid State Chem. 271, 175–190 (2019).
Wang, R. F. et al. Artificial ‘spin ice’ in a geometrically frustrated lattice of nanoscale ferromagnetic islands. Nature 439, 303–306 (2006).
Nisoli, C., Moessner, R. & Schiffer, P. Colloquium: artificial spin ice: designing and imaging magnetic frustration. Rev. Mod. Phys. 85, 1473–1490 (2013).
Heyderman, L. J. & Stamps, R. L. Artificial ferroic systems: novel functionality from structure, interactions and dynamics. J. Phys. Condens. Matter 25, 363201 (2013).
Rougemaille, N. & Canals, B. Cooperative magnetic phenomena in artificial spin systems: spin liquids, Coulomb phase and fragmentation of magnetism—a colloquium. Eur. Phys. J. B 92, 62 (2019).
Skjærvø, S. H., Marrows, C. H., Stamps, R. L. & Heyderman, L. J. Advances in artificial spin ice. Nat. Rev. Phys. 2, 13–28 (2020).
Zhang, S. et al. Crystallites of magnetic charges in artificial spin ice. Nature 500, 553–557 (2013).
Mengotti, E. et al. Real-space observation of emergent magnetic monopoles and associated Dirac strings in artificial kagome spin ice. Nat. Phys. 7, 68–74 (2011).
Farhan, A. et al. Direct observation of thermal relaxation in artificial spin ice. Phys. Rev. Lett. 111, 057204 (2013).
Chern, G. W., Morrison, M. J. & Nisoli, C. Degeneracy and criticality from emergent frustration in artificial spin ice. Phys. Rev. Lett. 111, 177201 (2013).
Morrison, M. J., Nelson, T. R. & Nisoli, C. Unhappy vertices in artificial spin ice: new degeneracies from vertex frustration. New J. Phys. 15, 045009 (2013).
Gilbert, I. et al. Emergent ice rule and magnetic charge screening from vertex frustration in artificial spin ice. Nat. Phys. 10, 670–675 (2014).
Gilbert, I. et al. Emergent reduced dimensionality by vertex frustration in artificial spin ice. Nat. Phys. 12, 162–165 (2016).
Farhan, A. et al. Emergent magnetic monopole dynamics in macroscopically degenerate artificial spin ice. Sci. Adv. 5, eaav6380 (2019).
Hügli, R. V. et al. Artificial kagome spin ice: dimensional reduction, avalanche control and emergent magnetic monopoles. Phil. Trans. R. Soc. A 370, 5767–5782 (2012).
Ladak, S., Read, D. E., Perkins, G. K., Cohen, L. F. & Branford, W. R. Direct observation of magnetic monopole defects in an artificial spin-ice system. Nat. Phys. 6, 359–363 (2010).
Anghinolfi, L. et al. Thermodynamic phase transitions in a frustrated magnetic metamaterial. Nat. Commun. 6, 8278 (2015).
Canals, B. et al. Fragmentation of magnetism in artificial kagome dipolar spin ice. Nat. Commun. 7, 11446 (2016).
Sendetskyi, O. et al. Continuous magnetic phase transition in artificial square ice. Phys. Rev. B 99, 214430 (2019).
Lehmann, J., Donnelly, C., Derlet, P. M., Heyderman, L. J. & Fiebig, M. Poling of an artificial magneto-toroidal crystal. Nat. Nanotechnol. 14, 141–144 (2019).
Lehmann, J. et al. Relation between microscopic interactions and macroscopic properties in ferroics. Nat. Nanotechnol. 15, 896–900 (2020).
Gartside, J. C. et al. Realization of ground state in artificial kagome spin ice via topological defect-driven magnetic writing. Nat. Nanotechnol. 13, 53–58 (2018).
Rougemaille, N. et al. Artificial kagome arrays of nanomagnets: a frozen dipolar spin ice. Phys. Rev. Lett. 106, 057209 (2011).
Chern, G. W., Mellado, P. & Tchernyshyov, O. Two-stage ordering of spins in dipolar spin ice on the kagome lattice. Phys. Rev. Lett. 106, 207202 (2011).
Möller, G. & Moessner, R. Magnetic multipole analysis of kagome and artificial spin-ice dipolar arrays. Phys. Rev. B 80, 140409 (2009).
Qi, Y., Brintlinger, T. & Cumings, J. Direct observation of the ice rule in an artificial kagome spin ice. Phys. Rev. B 77, 094418 (2008).
Tanaka, M., Saitoh, E., Miyajima, H., Yamaoka, T. & Iye, Y. Magnetic interactions in a ferromagnetic honeycomb nanoscale network. Phys. Rev. B 73, 052411 (2006).
Oǧuz, E. C. et al. Topology restricts quasidegeneracy in sheared square colloidal ice. Phys. Rev. Lett. 124, 238003 (2020).
Perrin, Y., Canals, B. & Rougemaille, N. Quasidegenerate ice manifold in a purely two-dimensional square array of nanomagnets. Phys. Rev. B 99, 224434 (2019).
Nisoli, C. et al. Effective temperature in an interacting vertex system: theory and experiment on artificial spin ice. Phys. Rev. Lett. 105, 047205 (2010).
Schánilec, V. et al. Bypassing dynamical freezing in artificial kagome ice. Phys. Rev. Lett. 125, 057203 (2020).
Yue, W. C. et al. Crystallizing kagome artificial spin ice. Phys. Rev. Lett. 129, 057202 (2022).
Hofhuis, K. et al. Real-space imaging of phase transitions in bridged artificial kagome spin ice. Nat. Phys. 18, 699–705 (2022).
Zhang, X. et al. Understanding thermal annealing of artificial spin ice. APL Mater. 7, 111112 (2019).
Nascimento, F. S., Mól, L. A. S., Moura-Melo, W. A. & Pereira, A. R. From confinement to deconfinement of magnetic monopoles in artificial rectangular spin ices. New J. Phys. 14, 115019 (2012).
Ribeiro, I. R. B. et al. Realization of rectangular artificial spin ice and direct observation of high energy topology. Sci Rep. 7, 13982 (2017).
Östman, E. et al. Interaction modifiers in artificial spin ices. Nat. Phys. 14, 375–379 (2018).
Branford, W. R., Ladak, S., Read, D. E., Zeissler, K. & Cohen, L. F. Emerging chirality in artificial spin ice. Science 335, 1597–1600 (2012).
Schánilec, V. et al. Approaching the topological low-energy physics of the F model in a two-dimensional magnetic lattice. Phys. Rev. Lett. 129, 027202 (2022).
King, A. D., Nisoli, C., Dahl, E. D., Poulin-Lamarre, G. & Lopez-Bezanilla, A. Qubit spin ice. Science 373, 576–580 (2021).
Lopez-Bezanilla, A. & Nisoli, C. Field-induced magnetic phases in a qubit Penrose quasicrystal. Sci. Adv. 9, eadf6631 (2023).
Lopez-Bezanilla, A. et al. Kagome qubit ice. Nat. Commun. 14, 1105 (2023).
Libál, A., Reichhardt, C. J. O. & Reichhardt, C. Creating artificial ice states using vortices in nanostructured superconductors. Phys. Rev. Lett. 102, 237004 (2009).
Latimer, M. L., Berdiyorov, G. R., Xiao, Z. L., Peeters, F. M. & Kwok, W. K. Realization of artificial ice systems for magnetic vortices in a superconducting MoGe thin film with patterned nanostructures. Phys. Rev. Lett. 111, 067001 (2013).
Trastoy, J. et al. Freezing and thawing of artificial ice by thermal switching of geometric frustration in magnetic flux lattices. Nat. Nanotechnol. 9, 710–715 (2014).
Wang, Y. L. et al. Switchable geometric frustration in an artificial-spin-ice-superconductor heterosystem. Nat. Nanotechnol. 13, 560–565 (2018).
Ortiz-Ambriz, A. & Tierno, P. Engineering of frustration in colloidal artificial ices realized on microfeatured grooved lattices. Nat. Commun. 7, 10575 (2016).
Rollano, V. et al. Topologically protected superconducting ratchet effect generated by spin-ice nanomagnets. Nanotechnology 30, 244003 (2019).
Lyu, Y. et al. Reconfigurable pinwheel artificial-spin-ice and superconductor hybrid device. Nano Lett. 20, 8933 (2020).
Lendinez, S. & Jungfleisch, M. B. Magnetization dynamics in artificial spin ice. J. Phys. Condens. Matter 32, 013001 (2020).
Gliga, S., Iacocca, E. & Heinonen, O. G. Dynamics of reconfigurable artificial spin ice: toward magnonic functional materials. APL Mater. 8, 040911 (2020).
Gartside, J. C. et al. Reconfigurable training and reservoir computing in an artificial spin-vortex ice via spin-wave fingerprinting. Nat. Nanotechnol. 17, 460–469 (2022).
Hu, W. et al. Distinguishing artificial spin ice states using magnetoresistance effect for neuromorphic computing. Nat. Commun. 14, 2562 (2023).
Nadeem, M., Fuhrer, M. S. & Wang, X. The superconducting diode effect. Nat. Rev. Phys. 5, 558 (2023).
Vansteenkiste, A. et al. The design and verification of MuMax3. AIP Adv. 4, 107133 (2014).
Leliaert, J. et al. Fast micromagnetic simulations on GPU—recent advances made with mumax3. J. Phys. D. 51, 123002 (2018).
Saglam, H. et al. Entropy-driven order in an array of nanomagnets. Nat. Phys. 18, 706–712 (2022).
Wang, Y.-L. et al. FigShare https://doi.org/10.6084/m9.figshare.24270862(2024).
Yuan, Z., Yue, W.-C. & Wang, Y.-L. Monte Carlo Simulation Programs for Direct-Kagome Artificial Spin Ice (Zenodo, 2024); https://doi.org/10.5281/zenodo.10825074