The potential use of nanozymes as an antibacterial agents in oral infection, periodontitis, and peri-implantitis | Journal of Nanobiotechnology

The potential use of nanozymes as an antibacterial agents in oral infection, periodontitis, and peri-implantitis | Journal of Nanobiotechnology


  • Su Y, Ding M, Dong H, Hu Y, Yang D, Shao J, et al. Recent advances in nanozymes for combating bacterial infection. Mater Chem Front. 2022;6(18):2596–609.

    Article 
    CAS 

    Google Scholar
     

  • Shahrtash SA, Ghnim ZS, Ghaheri M, Adabi J, Yasamineh S, Afkhami H, et al. Recent advances in the role of different nanoparticles in the various biosensors for the detection of the chikungunya virus. Mol Biotechnol. 2024. https://doi.org/10.1007/s12033-024-01052-6.

    Article 
    PubMed 

    Google Scholar
     

  • Kiarashi M, Mahamed P, Ghotbi N, Tadayonfard A, Nasiri K, Kazemi P, et al. Spotlight on therapeutic efficiency of green synthesis metals and their oxide nanoparticles in periodontitis. J Nanobiotechnol. 2024;22(1):21.

    Article 
    CAS 

    Google Scholar
     

  • Kiarashi M, Bayat H, Shahrtash SA, Etajuri EA, Khah MM, Al-Shaheri NA, et al. Mesenchymal stem cell-based scaffolds in regenerative medicine of dental diseases. Stem Cell Rev Rep. 2024. https://doi.org/10.1007/s12015-024-10687-6.

    Article 
    PubMed 

    Google Scholar
     

  • Nasiri K, Jahri M, Kolahdouz S, Soleimani M, Makiya A, Saini RS, et al. MicroRNAs function in dental stem cells as a promising biomarker and therapeutic target for dental diseases. Mol Diagn Ther. 2023;27(6):703–22.

    Article 
    PubMed 

    Google Scholar
     

  • Yasamineh S, Yasamineh P, Kalajahi HG, Gholizadeh O, Yekanipour Z, Afkhami H, et al. A state-of-the-art review on the recent advances of niosomes as a targeted drug delivery system. Int J Pharm. 2022;624: 121878.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Nasiri K, Masoumi SM, Amini S, Goudarzi M, Tafreshi SM, Bagheri A, et al. Recent advances in metal nanoparticles to treat periodontitis. J Nanobiotechnol. 2023;21(1):283.

    Article 

    Google Scholar
     

  • Wang Q, Zhang Y, Li Q, Chen L, Liu H, Ding M, et al. Therapeutic applications of antimicrobial silver-based biomaterials in dentistry. Int J Nanomed. 2022;17:443–62.

    Article 
    CAS 

    Google Scholar
     

  • Ren X, Chen D, Wang Y, Li H, Zhang Y, Chen H, et al. Nanozymes-recent development and biomedical applications. J Nanobiotechnol. 2022;20(1):92.

    Article 
    CAS 

    Google Scholar
     

  • Zhang Z, Tian Y, Huang P, Wu FY. Using target-specific aptamers to enhance the peroxidase-like activity of gold nanoclusters for colorimetric detection of tetracycline antibiotics. Talanta. 2020;208: 120342.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang H, Cui Z, Wang X, Sun S, Zhang D, Fu C. Therapeutic applications of nanozymes in chronic inflammatory diseases. Biomed Res Int. 2021;2021:1–9.


    Google Scholar
     

  • Bornscheuer UT, Huisman G, Kazlauskas R, Lutz S, Moore J, Robins K. Engineering the third wave of biocatalysis. Nature. 2012;485(7397):185–94.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gurung N, Ray S, Bose S, Rai V. A broader view: microbial enzymes and their relevance in industries, medicine, and beyond. BioMed Res Int. 2013. https://doi.org/10.1155/2013/329121.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gong L, Zhao Z, Lv YF, Huan SY, Fu T, Zhang XB, et al. DNAzyme-based biosensors and nanodevices. Chem Commun. 2015;51(6):979–95.

    Article 
    CAS 

    Google Scholar
     

  • Tian L, Qi J, Oderinde O, Yao C, Song W, Wang Y. Planar intercalated copper (II) complex molecule as small molecule enzyme mimic combined with Fe3O4 nanozyme for bienzyme synergistic catalysis applied to the microRNA biosensor. Biosens Bioelectron. 2018;110:110–7.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jansman MM, Hosta-Rigau L. Cerium-and iron-oxide-based nanozymes in tissue engineering and regenerative medicine. Catalysts. 2019;9(8):691.

    Article 
    CAS 

    Google Scholar
     

  • Huang Y, Ren J, Qu X. Nanozymes: classification, catalytic mechanisms, activity regulation, and applications. Chem Rev. 2019;119(6):4357–412.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Andersson DI. Improving predictions of the risk of resistance development against new and old antibiotics. Clin Microbiol Infect. 2015;21(10):894–8.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chen Z, Wang Z, Ren J, Qu X. Enzyme mimicry for combating bacteria and biofilms. Acc Chem Res. 2018;51(3):789–99.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang R, Fan K, Yan X. Nanozymes: created by learning from nature. Sci China Life Sci. 2020;63:1183–200.

    Article 
    PubMed 

    Google Scholar
     

  • Liang M, Wang Y, Ma K, Yu S, Chen Y, Deng Z, et al. Engineering inorganic nanoflares with elaborate enzymatic specificity and efficiency for versatile biofilm eradication. Small. 2020;16(41):2002348.

    Article 
    CAS 

    Google Scholar
     

  • Yang D, Chen Z, Gao Z, Tammina SK, Yang Y. Nanozymes used for antimicrobials and their applications. Colloids Surf B. 2020;195: 111252.

    Article 
    CAS 

    Google Scholar
     

  • Herget K, Hubach P, Pusch S, Deglmann P, Götz H, Gorelik TE, et al. Haloperoxidase mimicry by CeO2-x nanorods combats biofouling. Adv Mater. 2016. https://doi.org/10.1002/adma.201603823.

    Article 
    PubMed 

    Google Scholar
     

  • Ferracane J, Giannobile W. Novel biomaterials and technologies for the dental, oral, and craniofacial structures. J Dent Res. 2014;93(12):1185.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Daly S, Seong J, Newcombe R, Davies M, Nicholson J, Edwards M, et al. A randomised clinical trial to determine the effect of a toothpaste containing enzymes and proteins on gum health over 3 months. J Dent. 2019;80:S26–32.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Niazi S, Al-Ali W, Patel S, Foschi F, Mannocci F. Synergistic effect of 2% chlorhexidine combined with proteolytic enzymes on biofilm disruption and killing. Int Endod J. 2015;48(12):1157–67.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ma Q, Liu Y, Zhu H, Zhang L, Liao X. Nanozymes in tumor theranostics. Front Oncol. 2021;11: 666017.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Augustine D, Sowmya S, Gujjar N, Pushpalatha C, Haragannavar VC. Role of nanozymes in oral cancer the road ahead. Top Catal. 2022;65(19–20):1973–83.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dragoš A, Kovács ÁT. The peculiar functions of the bacterial extracellular matrix. Trend Microbiol. 2017;25(4):257–66.

    Article 

    Google Scholar
     

  • Shen B, Yang L, Xu H, Zhang Y, Ming D, Zhu L, et al. Detection and treatment of biofilm-induced periodontitis by histidine-doped FeSN nanozyme with ultra-high peroxidase-like activity. J Coll Interfac Sci. 2023;650:211–21.

    Article 
    CAS 

    Google Scholar
     

  • Liang M, Yan X. Nanozymes: from new concepts, mechanisms, and standards to applications. Acc Chem Res. 2019;52(8):2190–200.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chen X, Xing H, Zhou Z, Hao Y, Zhang X, Qi F, et al. Nanozymes go oral: nanocatalytic medicine facilitates dental health. J Mater Chem B. 2021;9(6):1491–502.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wu YK, Cheng NC, Cheng CM. Biofilms in chronic wounds: pathogenesis and diagnosis. Trend Biotechnol. 2019;37(5):505–17.

    Article 
    CAS 

    Google Scholar
     

  • Schultz G, Bjarnsholt T, James GA, Leaper DJ, McBain AJ, Malone M, et al. Consensus guidelines for the identification and treatment of biofilms in chronic nonhealing wounds. Wound Repair Regen. 2017;25(5):744–57.

    Article 
    PubMed 

    Google Scholar
     

  • Omar A, Wright JB, Schultz G, Burrell R, Nadworny P. Microbial biofilms and chronic wounds. Microorganisms. 2017;5(1):9.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fazli M, Bjarnsholt T, Kirketerp-Møller K, Jørgensen A, Andersen CB, Givskov M, et al. Quantitative analysis of the cellular inflammatory response against biofilm bacteria in chronic wounds. Wound Repai Regen. 2011;19(3):387–91.

    Article 

    Google Scholar
     

  • Schmidt I, Gad A, Scholz G, Boht H, Martens M, Schilling M, et al. Gold-modified indium tin oxide as a transparent window in optoelectronic diagnostics of electrochemically active biofilms. Biosens Bioelectron. 2017;94:74–80.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang Y, Li C, Shen B, Zhu L, Zhang Y, Jiang L. Ultra-small Au/Pt NCs@ GOX clusterzyme for enhancing cascade catalytic antibiofilm effect against F. nucleatum-induced periodontitis. Chem Eng J. 2023;466:143292.

    Article 
    CAS 

    Google Scholar
     

  • Wongpreecha J, Polpanich D, Suteewong T, Kaewsaneha C, Tangboriboonrat P. One-pot, large-scale green synthesis of silver nanoparticles-chitosan with enhanced antibacterial activity and low cytotoxicity. Carbohyd Polym. 2018;199:641–8.

    Article 
    CAS 

    Google Scholar
     

  • Zhang L, Qi Z, Zou Y, Zhang J, Xia W, Zhang R, et al. Engineering DNA–nanozyme interfaces for rapid detection of dental bacteria. ACS Appl Mater Interfac. 2019;11(34):30640–7.

    Article 
    CAS 

    Google Scholar
     

  • Zhu B, Li L, Wang B, Miao L, Zhang J, Wu J. Introducing nanozymes: new horizons in periodontal and dental implant care. ChemBioChem. 2023;24(7): e202200636.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Darby I. Non-surgical management of periodontal disease. Aust Dent J. 2009;54:S86–95.

    Article 
    PubMed 

    Google Scholar
     

  • Sivamaruthi BS, Kesika P, Chaiyasut C. A review of the role of probiotic supplementation in dental caries. Probiotics Antimicrob Prot. 2020;12:1300–9.

    Article 

    Google Scholar
     

  • Liao J, Zhang L, Sun B, Wang D, Zhang Z, Ma W, et al. Stimuli-responsive graphdiyne-silver nanozymes for catalytic ion therapy of dental caries through targeted biofilms removal and remineralization. Nano Today. 2024;55: 102204.

    Article 
    CAS 

    Google Scholar
     

  • Chokkattu JJ, Neeharika S, Rameshkrishnan M. Applications of nanomaterials in dentistry: a review. J Int Soc Prev Commun Dent. 2023;13(1):32–41.

    Article 

    Google Scholar
     

  • Raza A, Sime FB, Cabot PJ, Maqbool F, Roberts JA, Falconer JR. Solid nanoparticles for oral antimicrobial drug delivery: a review. Drug Discov Today. 2019;24(3):858–66.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ahmadi H, Ebrahimi A, Ahmadi F. Antibiotic therapy in dentistry. Int J Dent. 2021. https://doi.org/10.1155/2021/6667624.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhou C, Wang Q, Jiang J, Gao L. Nanozybiotics: nanozyme-based antibacterials against bacterial resistance. Antibiotics. 2022. https://doi.org/10.3390/antibiotics11030390.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ren S, Zhou Y, Fan R, Peng W, Xu X, Li L, et al. Constructing biocompatible MSN@ Ce@ PEG nanoplatform for enhancing regenerative capability of stem cell via ROS-scavenging in periodontitis. Chem Eng J. 2021;423: 130207.

    Article 
    CAS 

    Google Scholar
     

  • Cai Y, Li Y, Zhang J, Tang N, Bao X, Liu Z. New horizons for therapeutic applications of nanozymes in oral infection. Particuology. 2023;80:61–73.

    Article 
    CAS 

    Google Scholar
     

  • Zhang Q, Song L, Zhang K. Breakthroughs in nanozyme-inspired application diversity. Mater Chem Front. 2023. https://doi.org/10.1039/D2QM00960A.

    Article 

    Google Scholar
     

  • Wang X, Hu Y, Wei H. Nanozymes in bionanotechnology: from sensing to therapeutics and beyond. Inorg Chem Front. 2016;3(1):41–60.

    Article 
    CAS 

    Google Scholar
     

  • Meng Y, Li W, Pan X, Gadd GM. Applications of nanozymes in the environment. Environ Sci Nano. 2020;7(5):1305–18.

    Article 
    CAS 

    Google Scholar
     

  • Zheng Y, Liu W, Qin Z, Chen Y, Jiang H, Wang X. Mercaptopyrimidine-conjugated gold nanoclusters as nanoantibiotics for combating multidrug-resistant superbugs. Bioconjug Chem. 2018;29(9):3094–103.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cai T, Fang G, Tian X, Yin JJ, Chen C, Ge C. Optimization of antibacterial efficacy of noble-metal-based core–shell nanostructures and effect of natural organic matter. ACS Nano. 2019;13(11):12694–702.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chakraborty N, Gandhi S, Verma R, Roy I. Emerging prospects of nanozymes for antibacterial and anticancer applications. Biomedicines. 2022;10(6):1378.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu Q, Zhang A, Wang R, Zhang Q, Cui D. A review on metal-and metal oxide-based nanozymes: properties, mechanisms, and applications. Nano-micro letter. 2021;13:1–53.


    Google Scholar
     

  • Oh MJ, Yoon S, Babeer A. Nanozyme-based robotics approach for targeting fungal infection. Adv Mater. 2024;36(10):e2300320.

    Article 
    PubMed 

    Google Scholar
     

  • Hwang G, Paula AJ, Hunter EE, Liu Y, Babeer A, Karabucak B, et al. Catalytic antimicrobial robots for biofilm eradication. Sci Robot. 2019. https://doi.org/10.1126/scirobotics.aaw2388.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang H, Li P, Yu D, Zhang Y, Wang Z, Liu C, et al. Unraveling the enzymatic activity of oxygenated carbon nanotubes and their application in the treatment of bacterial infections. Nano Lett. 2018;18(6):3344–51.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang Z, Dong K, Liu Z, Zhang Y, Chen Z, Sun H, et al. Activation of biologically relevant levels of reactive oxygen species by Au/g-C3N4 hybrid nanozyme for bacteria killing and wound disinfection. Biomaterials. 2017;113:145–57.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang Q, Wei H, Zhang Z, Wang E, Dong S. Nanozyme: an emerging alternative to natural enzyme for biosensing and immunoassay. TrAC Trend Anal Chem. 2018;105:218–24.

    Article 
    CAS 

    Google Scholar
     

  • Ali A, Ovais M, Zhou H, Rui Y, Chen C. Tailoring metal-organic frameworks-based nanozymes for bacterial theranostics. Biomaterials. 2021;275: 120951.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hu WC, Younis MR, Zhou Y, Wang C, Xia XH. In situ fabrication of ultrasmall gold nanoparticles/2D MOFs hybrid as nanozyme for antibacterial therapy. Small. 2020;16(23):2000553.

    Article 
    CAS 

    Google Scholar
     

  • Yu Y, Zhao S, Gu D, Zhu B, Liu H, Wu W, et al. Cerium oxide nanozyme attenuates periodontal bone destruction by inhibiting the ROS–NFκB pathway. Nanoscale. 2022;14(7):2628–37.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Han J, Gu Y, Yang C, Meng L, Ding R, Wang Y, et al. Single-atom nanozyme: classification, regulation strategy, and safety concerns. J Mater Chem B. 2023. https://doi.org/10.1039/D3TB01644G.

    Article 
    PubMed 

    Google Scholar
     

  • Jiang B, Guo Z, Liang M. Recent progress in single-atom nanozymes research. Nano Res. 2023;16(2):1878–89.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bai J, Feng Y, Li W, Cheng Z, Rosenholm JM, Yang H, et al. Alternative copper-based single-atom nanozyme with superior multienzyme activities and nir-ii responsiveness to fight against deep tissue infections. Research. 2023;6:0031.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pleszczyńska M, Wiater A, Bachanek T, Szczodrak J. Enzymes in therapy of biofilm-related oral diseases. Biotechnol Appl Biochem. 2017;64(3):337–46.

    Article 
    PubMed 

    Google Scholar
     

  • Thomas EL, Milligan TW, Joyner RE, Jefferson MM. Antibacterial activity of hydrogen peroxide and the lactoperoxidase-hydrogen peroxide-thiocyanate system against oral streptococci. Infect Immun. 1994;62(2):529–35.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kurnia D, Hutabarat GS, Windaryanti D, Herlina T, Herdiyati Y, Satari MH. Potential allylpyrocatechol derivatives as antibacterial agent against oral pathogen of S. sanguinis ATCC 10,556 and as inhibitor of MurA enzymes: in vitro and in silico study. Drug Des Dev Ther. 2020;14:2977–85.

    Article 
    CAS 

    Google Scholar
     

  • Shan J, Che J, Song C, Zhao Y. Emerging antibacterial nanozymes for wound healing. Smart Med. 2023;2(3): e20220025.

    Article 
    CAS 

    Google Scholar
     

  • Wang M, Zhou X, Li Y, Dong Y, Meng J, Zhang S, et al. Triple-synergistic MOF-nanozyme for efficient antibacterial treatment. Bioact Mater. 2022;17:289–99.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhong H, Jiang C, Huang Y. The recent development of nanozymes for targeting antibacterial, anticancer and antioxidant applications. RSC Adv. 2023;13(3):1539–50.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Attar F, Shahpar MG, Rasti B, Sharifi M, Saboury AA, Rezayat SM, et al. Nanozymes with intrinsic peroxidase-like activities. J Mol Liq. 2019;278:130–44.

    Article 
    CAS 

    Google Scholar
     

  • Vallabani NS, Vinu A, Singh S, Karakoti A. Tuning the ATP-triggered pro-oxidant activity of iron oxide-based nanozyme towards an efficient antibacterial strategy. J Coll Interfac Sci. 2020;567:154–64.

    Article 
    CAS 

    Google Scholar
     

  • Shi T, Cui Y, Yuan H, Qi R, Yu Y. Burgeoning single-atom nanozymes for efficient bacterial elimination. Nanomaterials. 2023;13(20):2760.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Huang Y, Liu Y, Pandey NK, Shah S, Simon-Soro A, Hsu JC, et al. Iron oxide nanozymes stabilize stannous fluoride for targeted biofilm killing and synergistic oral disease prevention. Nat Commun. 2023;14(1):6087.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang L-S, Gupta A, Rotello VM. Nanomaterials for the treatment of bacterial biofilms. ACS Infect Dis. 2016;2(1):3–4.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wegener M, Hansen MJ, Driessen AJ, Szymanski W, Feringa BL. Photocontrol of antibacterial activity: shifting from UV to red light activation. J Am Chem Soc. 2017;139(49):17979–86.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Keohane CE, Steele AD, Fetzer C, Khowsathit J, Van Tyne D, Moynié L, et al. Promysalin elicits species-selective inhibition of Pseudomonas aeruginosa by targeting succinate dehydrogenase. J Am Chem Soc. 2018;140(5):1774–82.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang Z, Zhang X, Liu B, Liu J. Molecular imprinting on inorganic nanozymes for hundred-fold enzyme specificity. J Am Chem Soc. 2017;139(15):5412–9.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhao Y, Ye C, Liu W, Chen R, Jiang X. Tuning the composition of AuPt bimetallic nanoparticles for antibacterial application. Angew Chem Int Ed. 2014;53(31):8127–31.

    Article 
    CAS 

    Google Scholar
     

  • Yao S, Wang Z, Li L. Application of organic frame materials in cancer therapy through regulation of tumor microenvironment. Smart Mater Med. 2022;3:230–42.

    Article 

    Google Scholar
     

  • Mei L, Zhu S, Liu Y, Yin W, Gu Z, Zhao Y. An overview of the use of nanozymes in antibacterial applications. Chem Eng J. 2021;418: 129431.

    Article 
    CAS 

    Google Scholar
     

  • Zhang Y, Wang X, Li H, Ni C, Du Z, Yan F. Human oral microbiota and its modulation for oral health. Biomed Pharmacother. 2018;99:883–93.

    Article 
    PubMed 

    Google Scholar
     

  • Fang FC. Antimicrobial actions of reactive oxygen species. MBio. 2011. https://doi.org/10.1128/mBio.00141-11.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kim YE, Kim J. ROS-scavenging therapeutic hydrogels for modulation of the inflammatory response. ACS Appl Mater Interfac. 2021;14(20):23002–21.

    Article 

    Google Scholar
     

  • Gao L, Liu Y, Kim D, Li Y, Hwang G, Naha PC, et al. Nanocatalysts promote Streptococcus mutans biofilm matrix degradation and enhance bacterial killing to suppress dental caries in vivo. Biomaterials. 2016;101:272–84.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu Y, Naha PC, Hwang G, Kim D, Huang Y, Simon-Soro A, et al. Topical ferumoxytol nanoparticles disrupt biofilms and prevent tooth decay in vivo via intrinsic catalytic activity. Nat Commun. 2018;9(1):2920.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gu Y, Huang Y, Qiu Z, Xu Z, Li D, Chen L, et al. Vitamin B 2 functionalized iron oxide nanozymes for mouth ulcer healing. Sci China Life Sci. 2020;63:68–79.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Liu Y, Huang Y, Kim D, Ren Z. Ferumoxytol nanoparticles target biofilms causing tooth decay in the human mouth. Nano lett. 2021;21(22):9442–9.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Huang Y, Hsu JC, Koo H, Cormode DP. Repurposing ferumoxytol: diagnostic and therapeutic applications of an FDA-approved nanoparticle. Theranostics. 2022;12(2):796–816.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhong H, Jiang C, Huang Y. The recent development of nanozymes for targeting antibacterial, anticancer and antioxidant applications. RSC Adv. 2023;13(3):1539–50.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Naha PC, Liu Y, Hwang G, Huang Y, Gubara S, Jonnakuti V, et al. Dextran-coated iron oxide nanoparticles as biomimetic catalysts for localized and pH-activated biofilm disruption. ACS Nano. 2019;13(5):4960–71.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Huang Y, Liu Y, Shah S, Kim D, Simon-Soro A, Ito T, et al. Precision targeting of bacterial pathogen via bi-functional nanozyme activated by biofilm microenvironment. Biomaterials. 2021;268: 120581.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cai J-N, Kim D. Biofilm ecology associated with dental caries: understanding of microbial interactions in oral communities leads to development of therapeutic strategies targeting cariogenic biofilms. Adv Appl Microbiol. 2023. https://doi.org/10.1016/bs.aambs.2023.02.001.

    Article 
    PubMed 

    Google Scholar
     

  • Wang Y, Shen X, Ma S, Guo Q, Zhang W, Cheng L, et al. Oral biofilm elimination by combining iron-based nanozymes and hydrogen peroxide-producing bacteria. Biomater sci. 2020;8(9):2447–58.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Xie F, Zhu C, Gong L, Zhu N, Ma Q, Yang Y, et al. Engineering core–shell chromium nanozymes with inflammation-suppressing, ROS-scavenging and antibacterial properties for pulpitis treatment. Nanoscale. 2023;15(34):13971–86.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chokkattu JJ, Neeharika S, Rameshkrishnan M. Applications of nanomaterials in dentistry: a review. J Int Soc Prev Commun Dent. 2023;13(1):32.

    Article 

    Google Scholar
     

  • Yu Y, Wen H, Li S, Cao H, Li X, Ma Z, et al. Emerging microfluidic technologies for microbiome research. Front Microbiol. 2022;13: 906979.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Heikkilä P, Niskanen L, But A, Sorsa T, Haukka J. Oral health associated with incident diabetes but not other chronic diseases: a register-based cohort study. Front Oral Health. 2022;3: 956072.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Schrader SM, Vaubourgeix J, Nathan C. Biology of antimicrobial resistance and approaches to combat it. Sci Transl Med. 2020;12(549): eaaz6992.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Arafa MG, Ghalwash D, El-Kersh DM, Elmazar M. Publisher correction: propolis-based niosomes as oromuco-adhesive films: a randomized clinical trial of a therapeutic drug delivery platform for the treatment of oral recurrent aphthous ulcers. Sci Rep. 2020. https://doi.org/10.1038/s41598-020-59349-w.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dudding T, Haworth S, Lind PA, Sathirapongsasuti JF, Tung JY, Mitchell R, et al. Genome wide analysis for mouth ulcers identifies associations at immune regulatory loci. Nat Commun. 2019;10(1):1052.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Huang Y, Liu Y, Pandey N, Shah S, Simon-Soro A, Hsu J, et al. Iron oxide nanozymes stabilize stannous fluoride for targeted biofilm killing and synergistic oral disease prevention. Nat commun. 2023;26:229.


    Google Scholar
     

  • Sun Z, Ma L, Sun X, Sloan AJ, O’Brien-Simpson NM, Li W. The overview of antimicrobial peptide-coated implants against oral bacterial infections. Aggregate. 2023. https://doi.org/10.1002/agt2.309.

    Article 

    Google Scholar
     

  • Li Y, Liu X, Li B, Zheng Y, Han Y, Chen DF, et al. Near-infrared light triggered phototherapy and immunotherapy for elimination of methicillin-resistant Staphylococcus aureus biofilm infection on bone implant. ACS nano. 2020;14(7):8157–70.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Feng C, Ouyang J, Tang Z, Kong N, Liu Y, Fu L, et al. Germanene-based theranostic materials for surgical adjuvant treatment: inhibiting tumor recurrence and wound infection. Matter. 2020;3(1):127–44.

    Article 

    Google Scholar
     

  • Raneses JR, Ellison AL, Liu B, Davis KM. Subpopulations of stressed Yersinia pseudotuberculosis preferentially survive doxycycline treatment within host tissues. Mbio. 2020. https://doi.org/10.1128/mBio.00901-20.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dhar Y, Han Y. Current developments in biofilm treatments: wound and implant infections. Eng Regen. 2020;1:64–75.


    Google Scholar
     

  • Wu P, Chen D, Yang H, Lai C, Xuan C, Chen Y, et al. Antibacterial peptide-modified collagen nanosheet for infected wound repair. Smart Mater Med. 2021;2:172–81.

    Article 

    Google Scholar
     

  • Ouyang J, Xie A, Zhou J, Liu R, Wang L, Liu H, et al. Minimally invasive nanomedicine: nanotechnology in photo-/ultrasound-/radiation-/magnetism-mediated therapy and imaging. Chem Soc Rev. 2022;51(12):4996–5041.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhu H, Zhang H, Chen S, Guan S, Lu W, Zhu H, et al. Fe-NC nanozymes-loaded TiO2 nanotube arrays endow titanium implants with excellent antioxidant capacity for inflammation inhibition and soft tissue integration. Compos B Eng. 2023;267: 111054.

    Article 
    CAS 

    Google Scholar
     

  • Tao B, Lin C, He Y, Yuan Z, Chen M, Xu K, et al. Osteoimmunomodulation mediating improved osteointegration by OGP-loaded cobalt-metal organic framework on titanium implants with antibacterial property. Chem Eng J. 2021;423: 130176.

    Article 
    CAS 

    Google Scholar
     

  • Li Q, Liu Q, Wang Z, Zhang X, Ma R, Hu X, et al. Biofilm homeostasis interference therapy via 1O2-sensitized hyperthermia and immune microenvironment re-rousing for biofilm-associated infections elimination. Small. 2023. https://doi.org/10.1002/smll.202300592.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yang K, Dong H, Xiu W, Yuwen L, Mou Y, Yin Z, et al. Self-adaptive antibiofilm effect and immune regulation by hollow Cu2MoS4 nanospheres for treatment of implant infections. ACS Appl Mater Interfac. 2023;15(15):18720–33.

    Article 
    CAS 

    Google Scholar
     

  • Liu M, Huang L, Xu X, Wei X, Yang X, Li X, et al. Copper doped carbon dots for addressing bacterial biofilm formation, wound infection, and tooth staining. ACS Nano. 2022;16(6):9479–97.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Prathapachandran J, Suresh N. Management of peri-implantitis. Dent Res J. 2012;9(5):516.

    Article 

    Google Scholar
     

  • Dong H, Liu H, Zhou N, Li Q, Yang G, Chen L, et al. Surface modified techniques and emerging functional coating of dental implants. Coatings. 2020;10(11):1012.

    Article 
    CAS 

    Google Scholar
     

  • Xu Q, Xiu W, Li Q, Zhang Y, Li X, Ding M, et al. Emerging nanosonosensitizers augment sonodynamic-mediated antimicrobial therapies. Mater Today Bio. 2023;19: 100559.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xiu W, Li X, Li Q, Ding M, Zhang Y, Wan L, et al. Ultrasound-stimulated “exocytosis” by cell-like microbubbles enhances antibacterial species penetration and immune activation against implant infection. Adv Sci. 2023. https://doi.org/10.1002/advs.202307048.

    Article 

    Google Scholar
     

  • Hu Y, Li S, Dong H, Weng L, Yuwen L, Xie Y, et al. Environment-responsive therapeutic platforms for the treatment of implant infection. Adv Healthc Mater. 2023;12(26):2300985.

    Article 
    CAS 

    Google Scholar
     

  • Fu JH, Wang HL. Breaking the wave of peri-implantitis. Periodontol 2000. 2020;84(1):145–60.

    Article 
    PubMed 

    Google Scholar
     

  • Li K, Xie Y, You M, Huang L, Zheng X. Plasma sprayed cerium oxide coating inhibits H2 O2-induced oxidative stress and supports cell viability. J Mater Sci Mater Med. 2016;27:1–10.

    Article 

    Google Scholar
     

  • Lee EH, Lee SW, Seo Y, Deng YH, Lim YJ, Kwon HB, et al. Manganese oxide nanozyme-doped diatom for safe and efficient treatment of peri-implantitis. ACS Appl Mater Interfac. 2022;14(24):27634–50.

    Article 
    CAS 

    Google Scholar
     

  • Su Z, Kong L, Mei J, Li Q, Qian Z, Ma Y, et al. Enzymatic bionanocatalysts for combating peri-implant biofilm infections by specific heat-amplified chemodynamic therapy and innate immunomodulation. Drug Resist Updat. 2023;67: 100917.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li F, Pan Q, Ling Y, Guo J, Huo Y, Xu C, et al. Gold−Titanium dioxide heterojunction for enhanced sonodynamic mediated biofilm eradication and peri-implant infection treatment. Chem Eng J. 2023;460: 141791.

    Article 
    CAS 

    Google Scholar
     

  • Li D, Tan X, Zheng L, Tang H, Hu S, Zhai Q, et al. A dual-antioxidative coating on transmucosal component of implant to repair connective tissue barrier for treatment of peri-implantitis. Adv Healthc Mater. 2023. https://doi.org/10.1002/adhm.202301733.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kim H, Lee EH, Lee SW, Deng YH, Kwon HB, Lim YJ, et al. Antimicrobial efficacy of self-locomotive manganese oxide nanozyme-doped diatom microbubbler on orthodontic brackets in vitro. BMC Oral Health. 2023;23(1):33.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kinane DF, Stathopoulou PG, Papapanou PN. Periodontal diseases. Nat Rev Dis Prim. 2017;3(1):1–14.


    Google Scholar
     

  • Wu T, Huang L, Sun J, Sun J, Yan Q, Duan B, et al. Multifunctional chitin-based barrier membrane with antibacterial and osteogenic activities for the treatment of periodontal disease. Carbohyd Polym. 2021;269: 118276.

    Article 
    CAS 

    Google Scholar
     

  • Osuna-Ramos JF, Farfan-Morales CN, Cordero-Rivera CD, De Jesús-González LA, Reyes-Ruiz JM, Hurtado-Monzón AM, et al. Cholesterol-lowering drugs as potential antivirals: a repurposing approach against flavivirus infections. Viruses. 2023;15(7):1465.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yu Y, Cheng Y, Tan L, Liu X, Li Z, Zheng Y, et al. Theory-screened MOF-based single-atom catalysts for facile and effective therapy of biofilm-induced periodontitis. Chem Eng J. 2022;431: 133279.

    Article 
    CAS 

    Google Scholar
     

  • Xu Y, Luo Y, Weng Z, Xu H, Zhang W, Li Q, et al. Microenvironment-responsive metal-phenolic nanozyme release platform with antibacterial, ROS scavenging, and osteogenesis for periodontitis. ACS Nano. 2023;17(19):18732–46.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhu B, Wu J, Li T, Liu S, Guo J, Yu Y, et al. A glutathione peroxidase-mimicking nanozyme precisely alleviates reactive oxygen species and promotes periodontal bone regeneration. Adv Healthc Mater. 2023. https://doi.org/10.1002/adhm.202302485.

    Article 
    PubMed 

    Google Scholar
     

  • Altaweel AA, Baiomy AABA, Elsayed SAH. Effect of Nano-hydroxyapatite and platelet-rich fibrin covered by the amniotic membrane on osseointegration after mandibular piezoelectric ridge splitting. Saudi Dent J. 2021;33(1):27–33.

    Article 

    Google Scholar
     

  • Khaled H, Atef M, Hakam M. Maxillary sinus floor elevation using hydroxyapatite nano particles vs tenting technique with simultaneous implant placement: A randomized clinical trial. Clin Implant Dent Relat Res. 2019;21(6):1241–52.

    Article 
    PubMed 

    Google Scholar
     

  • Boccia G, Di Spirito F. Local and systemic antibiotics in peri-implantitis management: an umbrella review. Antibiotics. 2023. https://doi.org/10.3390/antibiotics12010114.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li X, Qi M, Sun X, Weir MD, Tay FR, Oates TW, et al. Surface treatments on titanium implants via nanostructured ceria for antibacterial and anti-inflammatory capabilities. Acta Biomater. 2019;94:627–43.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Abdulkareem EH, Memarzadeh K, Allaker R, Huang J, Pratten J, Spratt D. Anti-biofilm activity of zinc oxide and hydroxyapatite nanoparticles as dental implant coating materials. J Dent. 2015;43(12):1462–9.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang X, Fan H, Zhang F, Zhao S, Liu Y, Xu Y, et al. Antibacterial properties of bilayer biomimetic nano-ZnO for dental implants. ACS Biomater Sci Eng. 2020;6(4):1880–6.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cui H, You Y, Cheng GW, Lan Z, Zou KL, Mai QY, et al. Advanced materials and technologies for oral diseases. Sci Technol Adv Mater. 2023;24(1):2156257.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lin Y, Ren J, Qu X. Nano-gold as artificial enzymes: hidden talents. Adv Mater. 2014;26(25):4200–17.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhu B, Li L, Wang B, Miao L, Zhang J, Wu J. Introducing nanozymes: new horizons in periodontal and dental implant care. ChemBioChem. 2023;24(7): e202200636.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Feng Y, Chen F, Rosenholm JM, Liu L, Zhang H. Efficient nanozyme engineering for antibacterial therapy. Mater Futur. 2022;1(2): 023502.

    Article 

    Google Scholar
     

  • Gorgzadeh A, Amiri PA, Yasamineh S, Naser BK, Abdulallah KA. The potential use of nanozyme in aging and age-related diseases. Biogerontology. 2024. https://doi.org/10.1007/s10522-024-10095-w.

    Article 
    PubMed 

    Google Scholar
     

  • Aminoroaya A, Neisiany RE, Khorasani SN, Panahi P, Das O, Madry H, et al. A review of dental composites: challenges, chemistry aspects, filler influences, and future insights. Compos B Eng. 2021;216: 108852.

    Article 
    CAS 

    Google Scholar
     

  • Imran M, Riaz S, Sanaullah I, Khan U, Sabri AN, Naseem S. Microwave assisted synthesis and antimicrobial activity of Fe3O4-doped ZrO2 nanoparticles. Ceram Int. 2019;45(8):10106–13.

    Article 
    CAS 

    Google Scholar
     

  • Sharan J, Singh S, Lale SV, Mishra M, Koul V, Kharbanda OP. Applications of nanomaterials in dental science: a review. J Nanosci Nanotechnol. 2017;17(4):2235–55.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang Q, Jiang J, Gao L. Catalytic antimicrobial therapy using nanozymes. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2022;14(2): e1769.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Siepmann J, Siepmann F. Mathematical modeling of drug delivery. Int J Pharm. 2008;364(2):328–43.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Pushpalatha C, Sowmya S, Augustine D, Kumar C, Gayathri V, Shakir A, et al. Antibacterial nanozymes: an emerging innovative approach to oral health management. Top Catal. 2022;65(19–20):2021–32.

    Article 
    CAS 

    Google Scholar
     

  • Ma W, Zhang T, Li R, Niu Y, Yang X, Liu J, et al. Bienzymatic synergism of vanadium oxide nanodots to efficiently eradicate drug-resistant bacteria during wound healing in vivo. J Coll Interfac Sci. 2020;559:313–23.

    Article 
    CAS 

    Google Scholar
     

  • Xu B, Wang H, Wang W, Gao L, Li S, Pan X, et al. A single-atom nanozyme for wound disinfection applications. Angew Chem. 2019;131(15):4965–70.

    Article 

    Google Scholar
     

  • Liu Y, Huang Y, Kim D, Ren Z, Oh MJ, Cormode DP, et al. Ferumoxytol nanoparticles target biofilms causing tooth decay in the human mouth. Nano Lett. 2021;21(22):9442–9.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Watt RG, Daly B, Allison P, Macpherson LM, Venturelli R, Listl S, et al. Ending the neglect of global oral health: time for radical action. Lancet. 2019;394(10194):261–72.

    Article 
    PubMed 

    Google Scholar
     

  • Xing H, Wang X, Xiao G, Zhao Z, Zou S, Li M, et al. Hierarchical assembly of nanostructured coating for siRNA-based dual therapy of bone regeneration and revascularization. Biomaterials. 2020;235: 119784.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lavrador P, Gaspar VM, Mano JF. Stimuli-responsive nanocarriers for delivery of bone therapeutics–Barriers and progresses. J Control Releas. 2018;273:51–67.

    Article 
    CAS 

    Google Scholar
     

  • Sreenivasalu PKP, Dora CP, Swami R, Jasthi VC, Shiroorkar PN, Nagaraja S. Nanomaterials in dentistry: current applications and future scope. Nanomaterials. 2022. https://doi.org/10.3390/nano12101676.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shin HY, Park TJ, Kim MI. Recent research trends and future prospects in nanozymes. J Nanomater. 2015. https://doi.org/10.1155/2015/756278.

    Article 

    Google Scholar
     

  • Deixe um comentário