Self-assembly of peptide nanocapsules by a solvent concentration gradient

Self-assembly of peptide nanocapsules by a solvent concentration gradient


  • Bar-Cohen, Y. Biomimetics—using nature to inspire human innovation. Bioinspir. Biomim. 1, P1 (2006).

    Article 
    PubMed 

    Google Scholar
     

  • Liu, Z., Meyers, M. A., Zhang, Z. & Ritchie, R. O. Functional gradients and heterogeneities in biological materials: design principles, functions, and bioinspired applications. Prog. Mater. Sci. 88, 467–498 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Waite, J. H., Lichtenegger, H. C., Stucky, G. D. & Hansma, P. Exploring molecular and mechanical gradients in structural bioscaffolds. Biochemistry 43, 7653–7662 (2004).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Miserez, A., Li, Y., Waite, J. H. & Zok, F. Jumbo squid beaks: inspiration for design of robust organic composites. Acta Biomater. 3, 139–149 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ho, S. P., Marshall, S. J., Ryder, M. I. & Marshall, G. W. The tooth attachment mechanism defined by structure, chemical composition and mechanical properties of collagen fibers in the periodontium. Biomaterials 28, 5238–5245 (2007).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Meyers, M. A., McKittrick, J. & Chen, P.-Y. Structural biological materials: critical mechanics–materials connections. Science 339, 773–779 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Fratzl, P. & Weinkamer, R. Nature’s hierarchical materials. Prog. Mater. Sci. 52, 1263–1334 (2007).

    Article 
    CAS 

    Google Scholar
     

  • Heinemann, F., Launspach, M., Gries, K. & Fritz, M. Gastropod nacre: structure, properties and growth—biological, chemical and physical basics. Biophys. Chem. 153, 126–153 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chen, P.-Y., Stokes, A. & McKittrick, J. Comparison of the structure and mechanical properties of bovine femur bone and antler of the North American elk (Cervus elaphus canadensis). Acta Biomater. 5, 693–706 (2009).

    Article 
    PubMed 

    Google Scholar
     

  • Silva, E. C. N., Walters, M. C. & Paulino, G. H. Modeling bamboo as a functionally graded material: lessons for the analysis of affordable materials. J. Mater. Sci. 41, 6991–7004 (2006).

    Article 
    CAS 

    Google Scholar
     

  • Korevaar, P. A., Schaefer, C., de Greef, T. F. & Meijer, E. Controlling chemical self-assembly by solvent-dependent dynamics. J. Am. Chem. Soc. 134, 13482–13491 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang, J. et al. Trace solvent as a predominant factor to tune dipeptide self-assembly. ACS Nano 10, 2138–2143 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hartgerink, J. D., Beniash, E. & Stupp, S. I. Self-assembly and mineralization of peptide-amphiphile nanofibers. Science 294, 1684–1688 (2001).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lee, B. K., Yun, Y. & Park, K. PLA micro- and nano-particles. Adv. Drug Deliv. Rev. 107, 176–191 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • El-Sheikh, S., El-Sherbiny, S., Barhoum, A. & Deng, Y. Effects of cationic surfactant during the precipitation of calcium carbonate nano-particles on their size, morphology, and other characteristics. Colloids Surf. A 422, 44–49 (2013).

    Article 
    CAS 

    Google Scholar
     

  • Cheng, J. et al. Formulation of functionalized PLGA–PEG nanoparticles for in vivo targeted drug delivery. Biomaterials 28, 869–876 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Moreno‐Alcántar, G. et al. Solvent‐driven supramolecular wrapping of self‐assembled structures. Angew. Chem. Int. Ed. Engl. 133, 5467–5473 (2021).

    Article 

    Google Scholar
     

  • Te Brinke, E. et al. Dissipative adaptation in driven self-assembly leading to self-dividing fibrils. Nat. Nanotechnol. 13, 849–855 (2018).

    Article 

    Google Scholar
     

  • Albert, J. N. & Epps, T. H. III Self-assembly of block copolymer thin films. Mater. Today 13, 24–33 (2010).

    Article 
    CAS 

    Google Scholar
     

  • Knowles, T. P., Oppenheim, T. W., Buell, A. K., Chirgadze, D. Y. & Welland, M. E. Nanostructured films from hierarchical self-assembly of amyloidogenic proteins. Nat. Nanotechnol. 5, 204–207 (2010).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rideau, E., Wurm, F. R. & Landfester, K. Self‐assembly of giant unilamellar vesicles by film hydration methodologies. Adv. Biosyst. 3, 1800324 (2019).

    Article 

    Google Scholar
     

  • Blanazs, A., Armes, S. P. & Ryan, A. J. Self‐assembled block copolymer aggregates: from micelles to vesicles and their biological applications. Macromol. Rapid Commun. 30, 267–277 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cui, H., Chen, Z., Zhong, S., Wooley, K. L. & Pochan, D. J. Block copolymer assembly via kinetic control. Science 317, 647–650 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Rabani, E., Reichman, D. R., Geissler, P. L. & Brus, L. E. Drying-mediated self-assembly of nanoparticles. Nature 426, 271–274 (2003).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sorrenti, A., Leira-Iglesias, J., Markvoort, A. J., de Greef, T. F. & Hermans, T. M. Non-equilibrium supramolecular polymerization. Chem. Soc. Rev. 46, 5476–5490 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rivas, C. J. M. et al. Nanoprecipitation process: from encapsulation to drug delivery. Int. J. Pharm. 532, 66–81 (2017).

    Article 

    Google Scholar
     

  • Andersen, S. O. Biochemistry of insect cuticle. Annu. Rev. Entomol. 24, 29–59 (1979).

    Article 
    CAS 

    Google Scholar
     

  • Gopalan Nair, K. & Dufresne, A. Crab shell chitin whisker reinforced natural rubber nanocomposites. 1. Processing and swelling behavior. Biomacromolecules 4, 657–665 (2003).

    Article 
    PubMed 

    Google Scholar
     

  • Bogatyreva, N. S., Finkelstein, A. V. & Galzitskaya, O. V. Trend of amino acid composition of proteins of different taxa. J. Bioinform. Comput. Biol. 4, 597–608 (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Willis, J. H. Structural cuticular proteins from arthropods: annotation, nomenclature, and sequence characteristics in the genomics era. Insect Biochem. Mol. Biol. 40, 189–204 (2010).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kajava, A. V. Tandem repeats in proteins: from sequence to structure. J. Struct. Biol. 179, 279–288 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lebouille, J., Stepanyan, R., Slot, J., Stuart, M. C. & Tuinier, R. Nanoprecipitation of polymers in a bad solvent. Colloids Surf. A 460, 225–235 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Aryal, S., Hu, C.-M. J. & Zhang, L. Polymer–cisplatin conjugate nanoparticles for acid-responsive drug delivery. ACS Nano 4, 251–258 (2010).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hyde, C., Johnson, T. & Sheppard, R. Internal aggregation during solid phase peptide synthesis. Dimethyl sulfoxide as a powerful dissociating solvent. J. Chem. Soc. Chem. Commun. https://doi.org/10.1039/C39920001573 (1992).

  • Srivastava, K. R., Kumar, A., Goyal, B. & Durani, S. Stereochemistry and solvent role in protein folding: nuclear magnetic resonance and molecular dynamics studies of poly-l and alternating-l, d homopolypeptides in dimethyl sulfoxide. J. Phys. Chem. B 115, 6700–6708 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mendoza-Novelo, B., Mata-Mata, J. L., Vega-González, A., Cauich-Rodríguez, J. V. & Marcos-Fernández, Á. Synthesis and characterization of protected oligourethanes as crosslinkers of collagen-based scaffolds. J. Mater. Chem. B 2, 2874–2882 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gu, L., Jiang, Y. & Hu, J. Scalable spider‐silk‐like supertough fibers using a pseudoprotein polymer. Adv. Mater. 31, 1904311 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Annabi, N. et al. Synthesis of highly porous crosslinked elastin hydrogels and their interaction with fibroblasts in vitro. Biomaterials 30, 4550–4557 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Nowatzki, P. J. & Tirrell, D. A. Physical properties of artificial extracellular matrix protein films prepared by isocyanate crosslinking. Biomaterials 25, 1261–1267 (2004).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ramos, R. et al. Nanocapsules produced by nanoprecipitation of designed suckerin-silk fusion proteins. ACS Macro Lett. 10, 628–634 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang, L. et al. Microfluidic synthesis of rigid nanovesicles for hydrophilic reagents delivery. Angew. Chem. Int. Ed. Engl. 127, 4024–4028 (2015).

    Article 

    Google Scholar
     

  • Wang, Z., Rutjes, F. P. & van Hest, J. C. pH responsive polymersome Pickering emulsion for simple and efficient Janus polymersome fabrication. Chem. Commun. 50, 14550–14553 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Reuvers, A. & Smolders, C. Formation of membranes by means of immersion precipitation: part II. The mechanism of formation of membranes prepared from the system cellulose acetate-acetone-water. J. Membr. Sci. 34, 67–86 (1987).

    Article 
    CAS 

    Google Scholar
     

  • Taylor, N. O., Wei, M.-T., Stone, H. A. & Brangwynne, C. P. Quantifying dynamics in phase-separated condensates using fluorescence recovery after photobleaching. Biophys. J. 117, 1285–1300 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ray, S. et al. Mass photometric detection and quantification of nanoscale α-synuclein phase separation. Nat. Chem. 15, 1306–1316 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Greenfield, N. J. Analysis of the kinetics of folding of proteins and peptides using circular dichroism. Nat. Protoc. 1, 2891–2899 (2006).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Vögeli, B., Kazemi, S., Güntert, P. & Riek, R. Spatial elucidation of motion in proteins by ensemble-based structure calculation using exact NOEs. Nat. Struct. Mol. Biol. 19, 1053–1057 (2012).

    Article 
    PubMed 

    Google Scholar
     

  • Ulijn, R. V. & Smith, A. M. Designing peptide based nanomaterials. Chem. Soc. Rev. 37, 664–675 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Nauman, J. V., Campbell, P. G., Lanni, F. & Anderson, J. L. Diffusion of insulin-like growth factor-I and ribonuclease through fibrin gels. Biophys. J. 92, 4444–4450 (2007).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cui, H., Webber, M. J. & Stupp, S. I. Self‐assembly of peptide amphiphiles: from molecules to nanostructures to biomaterials. Biopolymers 94, 1–18 (2010).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tian, Y., Tirrell, M. V. & LaBelle, J. L. Harnessing the therapeutic potential of biomacromolecules through intracellular delivery of nucleic acids, peptides, and proteins. Adv. Healthc. Mater. 11, 2270066 (2022).

    Article 

    Google Scholar
     

  • Tang, L. et al. Investigating the optimal size of anticancer nanomedicine. Proc. Natl Acad. Sci. USA 111, 15344–15349 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Midoux, P., Pichon, C., Yaouanc, J. J. & Jaffrès, P. A. Chemical vectors for gene delivery: a current review on polymers, peptides and lipids containing histidine or imidazole as nucleic acids carriers. Br. J. Pharmacol. 157, 166–178 (2009).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xiang, Z. et al. Adding an unnatural covalent bond to proteins through proximity-enhanced bioreactivity. Nat. Methods 10, 885–888 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ruoslahti, E. & Pierschbacher, M. D. New perspectives in cell adhesion: RGD and integrins. Science 238, 491–497 (1987).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Naldini, L. Gene therapy returns to centre stage. Nature 526, 351–360 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Pardi, N. et al. Administration of nucleoside-modified mRNA encoding broadly neutralizing antibody protects humanized mice from HIV-1 challenge. Nat. Commun. 8, 14630 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Haopeng, L. et al. Data for: harnessing gradients for self-assembly of peptide-based nanocapsules: a pathway to advanced drug delivery systems. DR-NTU (Data) https://doi.org/10.21979/N9/DJV2BM (2023).

  • Deixe um comentário