Nanosurface-reconstructed perovskite for highly efficient and stable active-matrix light-emitting diode display

Nanosurface-reconstructed perovskite for highly efficient and stable active-matrix light-emitting diode display


  • Liu, X. K. et al. Metal halide perovskites for light-emitting diodes. Nat. Mater. 20, 10–21 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Dey, A. et al. State of the art and prospects for halide perovskite nanocrystals. ACS Nano 15, 10775–10981 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hassan, Y. et al. Ligand-engineered bandgap stability in mixed-halide perovskite LEDs. Nature 591, 72–77 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jiang, Y. et al. Synthesis-on-substrate of quantum dot solids. Nature 612, 679–684 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kim, J. S. et al. Ultra-bright, efficient and stable perovskite light-emitting diodes. Nature 611, 688–694 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang, Y. et al. All-inorganic quantum-dot LEDs based on a phase-stabilized α-CsPbI3 perovskite. Angew. Chem. Int. Ed. 60, 16164–16170 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Mir, W. J. et al. Lecithin capping ligands enable ultrastable perovskite-phase CsPbI3 quantum dots for Rec. 2020 bright-red light-emitting diodes. J. Am. Chem. Soc. 144, 13302–13310 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Boles, M. A., Ling, D., Hyeon, T. & Talapin, D. V. The surface science of nanocrystals. Nat. Mater. 15, 141–153 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chiba, T. et al. Anion-exchange red perovskite quantum dots with ammonium iodine salts for highly efficient light-emitting devices. Nat. Photonics 12, 681–687 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Yang, J.-N. et al. Potassium bromide surface passivation on CsPbI3−xBrx nanocrystals for efficient and stable pure red perovskite light-emitting diodes. J. Am. Chem. Soc. 142, 2956–2967 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Shen, X. et al. Bright and efficient pure red perovskite nanocrystals light‐emitting devices via in situ modification. Adv. Funct. Mater. 32, 2110048 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Zhang, J. et al. A multifunctional “halide-equivalent” anion enabling efficient CsPb(Br/I)3 nanocrystals pure-red light-emitting diodes with external quantum efficiency exceeding 23. Adv. Mater. 35, 2209002 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Zhang, J. et al. Ligand-induced cation–π interactions enable high-efficiency, bright, and spectrally stable Rec. 2020 pure-red perovskite light-emitting diodes. Adv. Mater. 35, 2303938 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Vashishtha, P. & Halpert, J. E. Field-driven ion migration and color instability in red-emitting mixed halide perovskite nanocrystal light-emitting diodes. Chem. Mater. 29, 5965–5973 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Barker, A. J. et al. Defect-assisted photoinduced halide segregation in mixed-halide perovskite thin films. ACS Energy Lett. 2, 1416–1424 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Xie, M. et al. High-efficiency pure-red perovskite quantum-dot light-emitting diodes. Nano Lett. 22, 8266–8273 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lan, Y. et al. Spectrally stable and efficient pure red CsPbI3 quantum dot light-emitting diodes enabled by sequential ligand post-treatment strategy. Nano Lett. 21, 8756–8763 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhou, Y. et al. Perovskite anion exchange: a microdynamics model and a polar adsorption strategy for precise control of luminescence color. Adv. Funct. Mater. 31, 2106871 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Chen, D. et al. Amino acid-passivated pure red CsPbI3 quantum dot LEDs. ACS Energy Lett. 8, 410–416 (2022).

    Article 

    Google Scholar
     

  • Song, Y.-H. et al. Planar defect-free pure red perovskite light-emitting diodes via metastable phase crystallization. Sci. Adv. 8, eabq2321 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • De Roo, J. et al. Highly dynamic ligand binding and light absorption coefficient of cesium lead bromide perovskite nanocrystals. ACS Nano 10, 2071–2081 (2016).

    Article 
    PubMed 

    Google Scholar
     

  • Fiuza-Maneiro, N. et al. Ligand chemistry of inorganic lead halide perovskite nanocrystals. ACS Energy Lett. 8, 1152–1191 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Yuan, M. et al. Perovskite energy funnels for efficient light-emitting diodes. Nat. Nanotechnol. 11, 872–877 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Xu, L. et al. A bilateral interfacial passivation strategy promoting efficiency and stability of perovskite quantum dot light-emitting diodes. Nat. Commun. 11, 3902 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhu, R., Luo, Z., Chen, H., Dong, Y. & Wu, S.-T. Realizing Rec. 2020 color gamut with quantum dot displays. Opt. Express 23, 23680–23693 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Han, T.-H. et al. A roadmap for the commercialization of perovskite light emitters. Nat. Rev. Mater. 7, 757–777 (2022).

    Article 

    Google Scholar
     

  • Protesescu, L. et al. Nanocrystals of cesium lead halide perovskites (CsPbX3, X = Cl, Br, and I): novel optoelectronic materials showing bright emission with wide color gamut. Nano Lett. 15, 3692–3696 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang, Q. et al. α-BaF2 nanoparticle substrate-enabled γ-CsPbI3 heteroepitaxial growth for efficient and bright deep-red light-emitting diodes. J. Am. Chem. Soc. 144, 8162–8170 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Das, S. & Samanta, A. Highly luminescent and phase-stable red/NIR-emitting all-inorganic and hybrid perovskite nanocrystals. ACS Energy Lett. 6, 3780–3787 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Zhong, Q. et al. L-type ligand-assisted acid-free synthesis of CsPbBr3 nanocrystals with near-unity photoluminescence quantum yield and high stability. Nano Lett. 19, 4151–4157 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Woo, J. Y. et al. Highly stable cesium lead halide perovskite nanocrystals through in situ lead halide inorganic passivation. Chem. Mater. 29, 7088–7092 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Yang, D. et al. Surface halogen compensation for robust performance enhancements of CsPbX3 perovskite quantum dots. Adv. Opt. Mater. 7, 1900276 (2019).

    Article 

    Google Scholar
     

  • Almeida, G. et al. Role of acid–base equilibria in the size, shape, and phase control of cesium lead bromide nanocrystals. ACS Nano 12, 1704–1711 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang, B. et al. Alkyl phosphonic acids deliver CsPbBr3 nanocrystals with high photoluminescence quantum yield and truncated octahedron shape. Chem. Mater. 31, 9140–9147 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Li, Y. et al. Highly luminescent and stable CsPbBr3 perovskite quantum dots modified by phosphine ligands. Nano Res. 12, 785–789 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Motti, S. G. et al. Controlling competing photochemical reactions stabilizes perovskite solar cells. Nat. Photonics 13, 532–539 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Meggiolaro, D., Mosconi, E. & De Angelis, F. Formation of surface defects dominates ion migration in lead-halide perovskites. ACS Energy Lett. 4, 779–785 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Udayabhaskararao, T. et al. A mechanistic study of phase transformation in perovskite nanocrystals driven by ligand passivation. Chem. Mater. 30, 84–93 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Yarita, N. et al. Dynamics of charged excitons and biexcitons in CsPbBr3 perovskite nanocrystals revealed by femtosecond transient-absorption and single-dot luminescence spectroscopy. J. Phys. Chem. Lett. 8, 1413–1418 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li, C. et al. Insights into ultrafast carrier dynamics in perovskite thin films and solar cells. ACS Photonics 7, 1893–1907 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Huang, J., Yuan, Y., Shao, Y. & Yan, Y. Understanding the physical properties of hybrid perovskites for photovoltaic applications. Nat. Rev. Mater. 2, 17042 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Shen, X. et al. Zn-alloyed CsPbI3 nanocrystals for highly efficient perovskite light-emitting devices. Nano Lett. 19, 1552–1559 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sutton, R. J. et al. Cubic or orthorhombic? Revealing the crystal structure of metastable black-phase CsPbI3 by theory and experiment. ACS Energy Lett. 3, 1787–1794 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Zou, W. et al. Minimising efficiency roll-off in high-brightness perovskite light-emitting diodes. Nat. Commun. 9, 608 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lin, X. et al. Electrically-driven single-photon sources based on colloidal quantum dots with near-optimal antibunching at room temperature. Nat. Commun. 8, 1132 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yuan, Y. & Huang, J. Ion migration in organometal trihalide perovskite and its impact on photovoltaic efficiency and stability. Acc. Chem. Res. 49, 286–293 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li, D. et al. Electronic and ionic transport dynamics in organolead halide perovskites. ACS Nano 10, 6933–6941 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang, B.-B. et al. Defect proliferation in CsPbBr3 crystal induced by ion migration. Appl. Phys. Lett. 116, 063505 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Li, H. et al. In-situ reacted multiple-anchoring ligands to produce highly photo-thermal resistant CsPbI3 quantum dots for display backlights. Chem. Eng. J. 454, 140038 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Dong, Y. et al. Precise control of quantum confinement in cesium lead halide perovskite quantum dots via thermodynamic equilibrium. Nano Lett. 18, 3716–3722 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Dai, X. et al. Solution-processed, high-performance light-emitting diodes based on quantum dots. Nature 515, 96–99 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • de Mello, J. C., Wittmann, H. F. & Friend, R. H. An improved experimental determination of external photoluminescence quantum efficiency. Adv. Mater. 9, 230–232 (1997).

    Article 

    Google Scholar
     

  • Zhang, Z. et al. High-performance, solution-processed, and insulating-layer-free light-emitting diodes based on colloidal quantum dots. Adv. Mater. 30, 1801387 (2018).

    Article 

    Google Scholar
     

  • Liu, Y. et al. Efficient blue light-emitting diodes based on quantum-confined bromide perovskite nanostructures. Nat. Photonics 13, 760–764 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 50, 17953–17979 (1994).

    Article 

    Google Scholar
     

  • Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996).

    Article 
    CAS 

    Google Scholar
     

  • Kresse, G. & Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 6, 15–50 (1996).

    Article 
    CAS 

    Google Scholar
     

  • Grimme, S., Antony, J., Ehrlich, S. & Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H–Pu. J. Chem. Phys. 132, 154104 (2010).

    Article 
    PubMed 

    Google Scholar
     

  • Grimme, S., Ehrlich, S. & Goerigk, L. Effect of the damping function in dispersion corrected density functional theory. J. Comput. Chem. 32, 1456–1465 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Deixe um comentário