Nanoscale doping of polymeric semiconductors with confined electrochemical ion implantation

Nanoscale doping of polymeric semiconductors with confined electrochemical ion implantation


  • Zheng, Y. Q. et al. Monolithic optical microlithography of high-density elastic circuits. Science 373, 88–94 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kim, M. J. et al. Completely foldable electronics based on homojunction polymer transistors and logics. Sci. Adv. 7, eabg8169 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Perevedentsev, A. & Campoy-Quiles, M. Rapid and high-resolution patterning of microstructure and composition in organic semiconductors using ‘molecular gates’. Nat. Commun. 11, 3610 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • WICK, G. L. Ion implantation. Science 170, 425–427 (1970).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Shinada, T., Okamoto, S., Kobayashi, T. & Ohdomari, I. Enhancing semiconductor device performance using ordered dopant arrays. Nature 437, 1128–1131 (2005).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sviridov, D. V. Chemical aspects of implantation of high-energy ions into polymeric materials. Russ. Chem. Rev. 71, 315–327 (2002).

    Article 
    CAS 

    Google Scholar
     

  • Moliton, A., Lucas, B., Moreau, C., Friend, R. H. & François, B. Ion implantation in conjugated polymers: mechanisms for generation of charge carriers. Philos. Mag. B 69, 1155–1171 (2006).

    Article 

    Google Scholar
     

  • Popok, V. Ion implantation of polymers: formation of nanoparticulate materials. Rev. Adv. Mater. Sci. 30, 1–26 (2012).

    CAS 

    Google Scholar
     

  • Jacobs, I. E. et al. Reversible optical control of conjugated polymer solubility with sub-micrometer resolution. ACS Nano 9, 1905 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bedolla et al. Reversible doping and photo patterning of polymer nanowires. Adv. Electron. Mater. 6, 2000469 (2020).

    Article 

    Google Scholar
     

  • Jacobs, I. E. et al. Direct-write optical patterning of P3HT films beyond the diffraction limit. Adv. Mater. 29, 1603221 (2017).

    Article 

    Google Scholar
     

  • Berggren, M. & Malliaras, G. G. How conducting polymer electrodes operate. Science 364, 233 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kawasaki, M. & Iwasa, Y. ‘Cut and stick’ ion gels. Nature 489, 510–511 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Rivnay, J. et al. Organic electrochemical transistors. Nat. Rev. Mater. 3, 17086 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Ishiguro, Y., Inagi, S. & Fuchigami, T. Site-controlled application of electric potential on a conducting polymer ‘canvas’. J. Am. Chem. Soc. 134, 4034–4036 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Borgwarth, K., Rieken, C.Ebling, D. G. & Heinze, J. Surface characterisation and modification by the scanning electrochemical microscope (SECM). Phys. Chem. 99, 1421–1426 (1995).

    CAS 

    Google Scholar
     

  • Bargigia, I., Savagian, L. R., Osterholm, A. M., Reynolds, J. R. & Silva, C. Charge-transfer intermediates in the electrochemical doping mechanism of conjugated polymers. J. Am. Chem. Soc. 143, 294–308 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bischak, C. G., Flagg, L. Q. & Ginger, D. S. Ion exchange gels allow organic electrochemical transistor operation with hydrophobic polymers in aqueous solution. Adv. Mater. 32, e2002610 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Vyazovkin, S. & Dranca, I. Physical stability and relaxation of amorphous indomethacin. J. Phys. Chem. B 109, 18637–18644 (2005).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Aziz, S. B., Woo, T. J., Kadir, M. F. Z. & Ahmed, H. M. A conceptual review on polymer electrolytes and ion transport models. J. Sci. Adv. Mater. Dev. 3, 1–17 (2018).


    Google Scholar
     

  • Zhao, Q., Stalin, S., Zhao, C.-Z. & Archer, L. A. Designing solid-state electrolytes for safe, energy-dense batteries. Nat. Rev. Mater. 5, 229–252 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Bresser, D., Lyonnard, S., Iojoiu, C., Picard, L. & Passerini, S. Decoupling segmental relaxation and ionic conductivity for lithium-ion polymer electrolytes. Mol. Syst. Des. Eng. 4, 779–792 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Wang, Y. et al. Decoupling of ionic transport from segmental relaxation in polymer electrolytes. Phys. Rev. Lett. 108, 088303 (2012).

    Article 
    PubMed 

    Google Scholar
     

  • Ratner, M. A. & Shriver, D. F. Ion transport in solvent-free polymers. Chem. Rev. 88, 109–124 (1988).

    Article 
    CAS 

    Google Scholar
     

  • Andersson Ersman, P. et al. All-printed large-scale integrated circuits based on organic electrochemical transistors. Nat. Commun. 10, 5053 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tanaka, H. et al. Thermoelectric properties of a semicrystalline polymer doped beyond the insulator-to-metal transition by electrolyte gating. Sci. Adv. 6, eaay8065 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zeiner, C. et al. Atypical self-activation of Ga dopant for Ge nanowire devices. Nano Lett. 11, 3108–3112 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kanungo, P. D. et al. Ex situ n and p doping of vertical epitaxial short silicon nanowires by ion implantation. Nanotechnology 20, 165706 (2009).

    Article 
    PubMed 

    Google Scholar
     

  • Wang, G. et al. Seamless lateral graphene p–n junctions formed by selective in situ doping for high-performance photodetectors. Nat. Commun. 9, 5168 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Utama, M. I. B. et al. A dielectric-defined lateral heterojunction in a monolayer semiconductor. Nat. Electron. 2, 60–65 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Liu, J. et al. N-type organic thermoelectrics of donor–acceptor copolymers: improved power factor by molecular tailoring of the density of states. Adv. Mater. 30, e1804290 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Ghasemi, M. et al. A molecular interaction–diffusion framework for predicting organic solar cell stability. Nat. Mater. 20, 525–532 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Venkateshvaran, D. et al. Approaching disorder-free transport in high-mobility conjugated polymers. Nature 515, 384–388 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Frisch, M. J. et al. Gaussian 16, revision C.01 (2016).

  • Deixe um comentário