Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, Bray F. Global Cancer Statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2021;71:209–49.
Chen X, Zhang Y. Combination of tumor fragments and nanotechnology as a therapeutic approach: treating a tumor with tumor. Nano Today. 2020;35: 100993.
Petrowsky H, Fritsch R, Guckenberger M, De Oliveira ML, Dutkowski P, Clavien P-A. Modern therapeutic approaches for the treatment of malignant liver tumours. Nat Rev Gastroenterol Hepatol. 2020;17:755–72.
Khalaf K, Hana D, Chou JT, Singh C, Mackiewicz A, Kaczmarek M. Aspects of the tumor microenvironment involved in immune resistance and drug resistance. Front Immunol. 2021;12: 656364.
Durão P, Balbontín R, Gordo I. Evolutionary mechanisms shaping the maintenance of antibiotic resistance. Trends Microbiol. 2018;26:677–91.
Russell SP, Neary C, Abd Elwahab S, Powell J, O’Connell N, Power L, Tormey S, Merrigan BA, Lowery AJ. Breast infections—microbiology and treatment in an era of antibiotic resistance. Surgeon. 2020;18:1–7.
Brown SB, Brown EA, Walker I. The present and future role of photodynamic therapy in cancer treatment. Lancet Oncol. 2004;5:497–508.
Shao Y, Liu B, Di Z, Zhang G, Sun LD, Li L, Yan CH. Engineering of upconverted metal-organic frameworks for near-infrared light-triggered combinational photodynamic/chemo-/immunotherapy against hypoxic tumors. J Am Chem Soc. 2020;142:3939–46.
Yang Z, Wang J, Ai S, Sun J, Mai X, Guan W. Self-generating oxygen enhanced mitochondrion-targeted photodynamic therapy for tumor treatment with hypoxia scavenging. Theranostics. 2019;9:6809–23.
Wang J, Sun J, Hu W, Wang Y, Chou T, Zhang B, Zhang Q, Ren L, Wang H. A porous Au@Rh bimetallic core-shell nanostructure as an H(2) O(2)-driven oxygenerator to alleviate tumor hypoxia for simultaneous bimodal imaging and enhanced photodynamic therapy. Adv Mater. 2020;32: e2001862.
Li D, Hu QY, Wang XZ, Li X, Hu JQ, Zheng BY, Ke MR, Huang JD. A non-aggregated silicon(IV) phthalocyanine-lactose conjugate for photodynamic therapy. Bioorg Med Chem Lett. 2020;30: 127164.
Chinna Ayya Swamy P, Sivaraman G, Priyanka RN, Raja SO, Ponnuvel K, Shanmugpriya J, Gulyani A. Near Infrared (NIR) absorbing dyes as promising photosensitizer for photo dynamic therapy. Coordination Chem Rev. 2020;411: 213233.
Ge G, Li L, Wang D, Chen M, Zeng Z, Xiong W, Wu X, Guo C. Carbon dots: synthesis, properties and biomedical applications. J Mater Chem B. 2021;9:6553–75.
Sharma V, Tiwari P, Mobin SM. Sustainable carbon-dots: recent advances in green carbon dots for sensing and bioimaging. J Mater Chem B. 2017;5:8904–24.
Zhu X, Yuan X, Han L, Liu H, Sun B. A smartphone-integrated optosensing platform based on red-emission carbon dots for real-time detection of pyrethroids. Biosens Bioelectron. 2021;191: 113460.
Ali H, Ghosh S, Jana NR. Fluorescent carbon dots as intracellular imaging probes. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2020;12: e1617.
Truskewycz A, Yin H, Halberg N, Lai DTH, Ball AS, Truong VK, Rybicka AM, Cole I. Carbon dot therapeutic platforms: administration, distribution, metabolism, excretion, toxicity, and therapeutic potential. Small. 2022;18: e2106342.
Tejwan N, Saha SK, Das J. Multifaceted applications of green carbon dots synthesized from renewable sources. Adv Colloid Interface Sci. 2020;275: 102046.
Uprety B, Abrahamse H. Semiconductor quantum dots for photodynamic therapy: recent advances. Front Chem. 2022;10: 946574.
Manikandan V, Lee NY. Green synthesis of carbon quantum dots and their environmental applications. Environ Res. 2022;212: 113283.
Wang H, Mukherjee S, Yi J, Banerjee P, Chen Q, Zhou S. Biocompatible chitosan-carbon dot hybrid nanogels for NIR-imaging-guided synergistic photothermal-chemo therapy. ACS Appl Mater Interfaces. 2017;9:18639–49.
Ardekani SM, Dehghani A, Hassan M, Kianinia M, Aharonovich I, Gomes VG. Two-photon excitation triggers combined chemo-photothermal therapy via doped carbon nanohybrid dots for effective breast cancer treatment. Chem Eng J. 2017;330:651–62.
Yao H, Zhao W, Zhang S, Guo X, Li Y, Du B. Dual-functional carbon dot-labeled heavy-chain ferritin for self-targeting bio-imaging and chemo-photodynamic therapy. J Mater Chem B. 2018;6:3107–15.
Zhao J, Li F, Zhang S, An Y, Sun S. Preparation of N-doped yellow carbon dots and N, P co-doped red carbon dots for bioimaging and photodynamic therapy of tumors. New J Chem. 2019;43:6332–42.
Cramer GM, Cengel KA, Busch TM. Forging forward in photodynamic therapy. Cancer Res. 2022;82:534–6.
Ochsner M. Photophysical and photobiological processes in the photodynamic therapy of tumours. J Photochem Photobiol B. 1997;39:1–18.
Abrahamse H, Hamblin Michael R. New photosensitizers for photodynamic therapy. Biochem J. 2016;473:347–64.
Ding H, Yu H, Dong Y, Tian R, Huang G, Boothman DA, Sumer BD, Gao J. Photoactivation switch from type II to type I reactions by electron-rich micelles for improved photodynamic therapy of cancer cells under hypoxia. J Control Release. 2011;156:276–80.
Sharman WM, Allen CM, van Lier JE. Role of activated oxygen species in photodynamic therapy. Methods Enzymol. 2000;319:376–400.
Zhang ZJ, Wang KP, Mo JG, Xiong L, Wen Y. Photodynamic therapy regulates fate of cancer stem cells through reactive oxygen species. World J Stem Cells. 2020;12:562–84.
Zhou Z, Song J, Nie L, Chen X. Reactive oxygen species generating systems meeting challenges of photodynamic cancer therapy. Chem Soc Rev. 2016;45:6597–626.
Yao Q, Fan J, Long S, Zhao X, Li H, Du J, Shao K, Peng X. The concept and examples of type-III photosensitizers for cancer photodynamic therapy. Chem. 2022;8:197–209.
Sai DL, Lee J, Nguyen DL, Kim YP. Tailoring photosensitive ROS for advanced photodynamic therapy. Exp Mol Med. 2021;53:495–504.
Sekar R, Basavegowda N, Jena S, Jayakodi S, Elumalai P, Chaitanyakumar A, Somu P, Baek KH. Recent developments in heteroatom/metal-doped carbon dot-based image-guided photodynamic therapy for cancer. Pharmaceutics. 2022;14:1869.
Di Y, Deng R, Liu Z, Mao Y, Gao Y, Zhao Q, Wang S. Optimized strategies of ROS-based nanodynamic therapies for tumor theranostics. Biomaterials. 2023;303: 122391.
Chung YJ, Kim J, Park CB. Photonic carbon dots as an emerging nanoagent for biomedical and healthcare applications. ACS Nano. 2020;14:6470–97.
Zhou Y, Sun H, Wang F, Ren J, Qu X. How functional groups influence the ROS generation and cytotoxicity of graphene quantum dots. Chem Commun (Camb). 2017;53:10588–91.
Pillar-Little TJ, Wanninayake N, Nease L, Heidary DK, Glazer EC, Kim DY. Superior photodynamic effect of carbon quantum dots through both type I and type II pathways: detailed comparison study of top-down-synthesized and bottom-up-synthesized carbon quantum dots. Carbon. 2018;140:616–23.
Huang S, Song Y, Zhang JR, Chen X, Zhu JJ. Antibacterial carbon dots-based composites. Small. 2023;19: e2207385.
Farajzadeh N, Çelik Ç, Atmaca GY, Özdemir S, Gonca S, Erdoğmuş A, Koçak MB. Photophysicochemical, sonochemical, and biological properties of novel hexadeca-substituted phthalocyanines bearing fluorinated groups. Dalton Trans. 2022;51:478–90.
Teng KX, Chen WK, Niu LY, Fang WH, Cui G, Yang QZ. BODIPY-based photodynamic agents for exclusively generating superoxide radical over singlet oxygen. Angew Chem Int Ed Engl. 2021;60:19912–20.
Jiang M, Liu Y, Dong Y, Wang K, Yuan Y. Bioorthogonal chemistry and illumination controlled programmed size-changeable nanomedicine for synergistic photodynamic and hypoxia-activated therapy. Biomaterials. 2022;284: 121480.
Ghaemi B, Moshiri A, Herrmann IK, Hajipour MJ, Wick P, Amani A, Kharrazi S. Supramolecular insights into domino effects of Ag@ZnO-induced oxidative stress in melanoma cancer cells. ACS Appl Mater Interfaces. 2019;11:46408–18.
Xuan W, Xia Y, Li T, Wang L, Liu Y, Tan W. Molecular self-assembly of bioorthogonal aptamer-prodrug conjugate micelles for hydrogen peroxide and pH-independent cancer chemodynamic therapy. J Am Chem Soc. 2020;142:937–44.
Zhang Y, Jia Q, Nan F, Wang J, Liang K, Li J, Xue X, Ren H, Liu W, Ge J, Wang P. Carbon dots nanophotosensitizers with tunable reactive oxygen species generation for mitochondrion-targeted type I/II photodynamic therapy. Biomaterials. 2022;293: 121953.
Lagos KJ, García D, Cuadrado CF, de Souza LM, Mezzacappo NF, da Silva AP, Inada N, Bagnato V, Romero MP. Carbon dots: types, preparation, and their boosted antibacterial activity by photoactivation. Current status and future perspectives. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2023;15: e1887.
Juarranz A, Jaén P, Sanz-Rodríguez F, Cuevas J, González S. Photodynamic therapy of cancer. Basic principles and applications. Clin Transl Oncol. 2008;10:148–54.
Li Q, Zhou R, Xie Y, Li Y, Chen Y, Cai X. Sulphur-doped carbon dots as a highly efficient nano-photodynamic agent against oral squamous cell carcinoma. Cell Prolif. 2020;53: e12786.
Agostinis P, Berg K, Cengel KA, Foster TH, Girotti AW, Gollnick SO, Hahn SM, Hamblin MR, Juzeniene A, Kessel D, et al. Photodynamic therapy of cancer: an update. CA Cancer J Clin. 2011;61:250–81.
Dash BS, Das S, Chen JP. Photosensitizer-functionalized nanocomposites for light-activated cancer theranostics. Int J Mol Sci. 2021;22:6658.
Mahmoudi K, Garvey KL, Bouras A, Cramer G, Stepp H, Jesu Raj JG, Bozec D, Busch TM, Hadjipanayis CG. 5-aminolevulinic acid photodynamic therapy for the treatment of high-grade gliomas. J Neurooncol. 2019;141:595–607.
Ermakov AV, Verkhovskii RA, Babushkina IV, Trushina DB, Inozemtseva OA, Lukyanets EA, Ulyanov VJ, Gorin DA, Belyakov S, Antipina MN. In vitro bioeffects of polyelectrolyte multilayer microcapsules post-loaded with water-soluble cationic photosensitizer. Pharmaceutics. 2020. https://doi.org/10.3390/pharmaceutics12070610.
Lan M, Zhao S, Liu W, Lee C-S, Zhang W, Wang P. Photosensitizers for photodynamic therapy. Adv Healthcare Mater. 2019;8:1900132.
Escudero A, Carrillo-Carrión C, Castillejos MC, Romero-Ben E, Rosales-Barrios C, Khiar N. Photodynamic therapy: photosensitizers and nanostructures. Mater Chem Front. 2021;5:3788–812.
Seo SH, Kim BM, Joe A, Han HW, Chen X, Cheng Z, Jang ES. NIR-light-induced surface-enhanced Raman scattering for detection and photothermal/photodynamic therapy of cancer cells using methylene blue-embedded gold nanorod@SiO2 nanocomposites. Biomaterials. 2014;35:3309–18.
Bayir S, Barras A, Boukherroub R, Szunerits S, Raehm L, Richeter S, Durand JO. Mesoporous silica nanoparticles in recent photodynamic therapy applications. Photochem Photobiol Sci. 2018;17:1651–74.
Sivasubramanian M, Chuang YC, Lo L-W. Evolution of nanoparticle-mediated photodynamic therapy: from superficial to deep-seated cancers. Molecules. 2019. https://doi.org/10.3390/molecules24030520.
Zühlke M, Meiling TT, Roder P, Riebe D, Beitz T, Bald I, Löhmannsröben HG, Janßen T, Erhard M, Repp A. Photodynamic inactivation of E. coli bacteria via carbon nanodots. ACS Omega. 2021;6:23742–9.
Kessel D. Photodynamic therapy: critical PDT theory. Photochem Photobiol. 2022. https://doi.org/10.1111/php.13616.
Hu J, Tang Y, Elmenoufy AH, Xu H, Cheng Z, Yang X. Nanocomposite-based photodynamic therapy strategies for deep tumor treatment. Small. 2015;11:5860–87.
Liu J, Li R, Yang B. Carbon dots: a new type of carbon-based nanomaterial with wide applications. ACS Cent Sci. 2020;6:2179–95.
Yao B, Huang H, Liu Y, Kang Z. Carbon dots: a small conundrum. Trends Chem. 2019;1:235–46.
Mansuriya BD, Altintas Z. Carbon dots: classification, properties, synthesis, characterization, and applications in health care—an updated review (2018–2021). Nanomaterials (Basel). 2021. https://doi.org/10.3390/nano11102525.
Wang S, Cole IS, Zhao D, Li Q. The dual roles of functional groups in the photoluminescence of graphene quantum dots. Nanoscale. 2016;8:7449–58.
Hola K, Zhang Y, Wang Y, Giannelis EP, Zboril R, Rogach AL. Carbon dots—emerging light emitters for bioimaging, cancer therapy and optoelectronics. Nano Today. 2014;9:590–603.
Yuan F, Li S, Fan Z, Meng X, Fan L, Yang S. Shining carbon dots: synthesis and biomedical and optoelectronic applications. Nano Today. 2016;11:565–86.
Cao L, Zan M, Chen F, Kou X, Liu Y, Wang P, Mei Q, Hou Z, Dong W-F, Li L. Formation mechanism of carbon dots: from chemical structures to fluorescent behaviors. Carbon. 2022;194:42–51.
Dhara AK, Maity S, Dhar BB. Visible-light-mediated synthesis of substituted phenazine and phenoxazinone using Eosin Y as a photoredox catalyst. Org Lett. 2021;23:3269–73.
Li H, Ye S, Guo J, Wang H, Yan W, Song J, Qu J. Biocompatible carbon dots with low-saturation-intensity and high-photobleaching-resistance for STED nanoscopy imaging of the nucleolus and tunneling nanotubes in living cells. Nano Res. 2019;12:3075–84.
Hassan M, Gomes VG, Dehghani A, Ardekani SM. Engineering carbon quantum dots for photomediated theranostics. Nano Res. 2018;11:1–41.
He H, Ji S, He Y, Zhu A, Zou Y, Deng Y, Ke H, Yang H, Zhao Y, Guo Z, Chen H. Photoconversion-tunable fluorophore vesicles for wavelength-dependent photoinduced cancer therapy. Adv Mater. 2017;29.
Ma Y, Huang J, Song S, Chen H, Zhang Z. Cancer-targeted nanotheranostics: recent advances and perspectives. Small. 2016;12:4936–54.
Wang B, Lu S. The light of carbon dots: from mechanism to applications. Matter. 2022;5:110–49.
Li Z, Pei Q, Zheng Y, Xie Z, Zheng M. Carbon dots for long-term near-infrared afterglow imaging and photodynamic therapy. Chem Eng J. 2023;467: 143384.
Yang Y, Cui J, Zheng M, Hu C, Tan S, Xiao Y, Yang Q, Liu Y. One-step synthesis of amino-functionalized fluorescent carbon nanoparticles by hydrothermal carbonization of chitosan. Chem Commun (Camb). 2012;48:380–2.
Tetsuka H, Asahi R, Nagoya A, Okamoto K, Tajima I, Ohta R, Okamoto A. Optically tunable amino-functionalized graphene quantum dots. Adv Mater. 2012;24:5333–8.
Jin SH, Kim DH, Jun GH, Hong SH, Jeon S. Tuning the photoluminescence of graphene quantum dots through the charge transfer effect of functional groups. ACS Nano. 2013;7:1239–45.
Lin H, Huang J, Ding L. Preparation of carbon dots with high-fluorescence quantum yield and their application in dopamine fluorescence probe and cellular imaging. J Nanomater. 2019;2019:5037243.
Zhang J, Lu X, Tang D, Wu S, Hou X, Liu J, Wu P. Phosphorescent carbon dots for highly efficient oxygen photosensitization and as photo-oxidative nanozymes. ACS Appl Mater Interfaces. 2018;10:40808–14.
Kuo WS, Chen HH, Chen SY, Chang CY, Chen PC, Hou YI, Shao YT, Kao HF, Lilian Hsu CL, Chen YC, et al. Graphene quantum dots with nitrogen-doped content dependence for highly efficient dual-modality photodynamic antimicrobial therapy and bioimaging. Biomaterials. 2017;120:185–94.
Wenger OS. A bright future for photosensitizers. Nat Chem. 2020;12:323–4.
Yang K, Wang C, Liu C, Ding S, Tian F, Li F. Bioluminescence-initiated photodynamic therapy bridged on high-luminescent carbon dots-conjugated protoporphyrin IX. J Mater Sci. 2019;54:3383–91.
Lin L, Song X, Dong X, Li B. Nano-photosensitizers for enhanced photodynamic therapy. Photodiagnosis Photodyn Ther. 2021;36: 102597.
Brancaleon L, Moseley H. Laser and non-laser light sources for photodynamic therapy. Lasers Med Sci. 2002;17:173–86.
Kim MM, Darafsheh A. Light sources and dosimetry techniques for photodynamic therapy. Photochem Photobiol. 2020;96:280–94.
Mang TS. Lasers and light sources for PDT: past, present and future. Photodiagn Photodyn Ther. 2004;1:43–8.
Hsiao CY, Yang SC, Alalaiwe A, Fang JY. Laser ablation and topical drug delivery: a review of recent advances. Expert Opin Drug Deliv. 2019;16:937–52.
Lim HS. Development and optimization of a diode laser for photodynamic therapy. Laser Ther. 2011;20:195–203.
Kamanli AF, Yildiz MZ, Arslan H, Çetinel G, Lim NK, Lim HS. Development of a new multi-mode NIR laser system for photodynamic therapy. Opt Laser Technol. 2020;128: 106229.
Saager RB, Cuccia DJ, Saggese S, Kelly KM, Durkin AJ. A light emitting diode (LED) based spatial frequency domain imaging system for optimization of photodynamic therapy of nonmelanoma skin cancer: quantitative reflectance imaging. Lasers Surg Med. 2013;45:207–15.
Leal CRL, Alvarenga LH, Oliveira-Silva T, Kato IT, Godoy-Miranda B, Bussadori SK, Ribeiro MS, Prates RA. Antimicrobial photodynamic therapy on Streptococcus mutans is altered by glucose in the presence of methylene blue and red LED. Photodiagn Photodyn Ther. 2017;19:1–4.
Lim HJ, Oh CH. Indocyanine green-based photodynamic therapy with 785nm light emitting diode for oral squamous cancer cells. Photodiagn Photodyn Ther. 2011;8:337–42.
He L, Yu X, Li W. Recent progress and trends in X-ray-induced photodynamic therapy with low radiation doses. ACS Nano. 2022;16:19691–721.
Rosenthal I, Sostaric JZ, Riesz P. Sonodynamic therapy—a review of the synergistic effects of drugs and ultrasound. Ultrason Sonochem. 2004;11:349–63.
Zheng Y, Ye J, Li Z, Chen H, Gao Y. Recent progress in sono-photodynamic cancer therapy: from developed new sensitizers to nanotechnology-based efficacy-enhancing strategies. Acta Pharm Sin B. 2021;11:2197–219.
Sadanala KC, Chaturvedi PK, Seo YM, Kim JM, Jo YS, Lee YK, Ahn WS. Sono-photodynamic combination therapy: a review on sensitizers. Anticancer Res. 2014;34:4657–64.
Geng B, Hu J, Li Y, Feng S, Pan D, Feng L, Shen L. Near-infrared phosphorescent carbon dots for sonodynamic precision tumor therapy. Nat Commun. 2022;13:5735.
Hamblin MR, Chiang LY, Lakshmanan S, Huang YY, Garcia-Diaz M, Karimi M, de Souza Rastelli AN, Chandran R. Nanotechnology for photodynamic therapy: a perspective from the Laboratory of D.r Michael R. Hamblin in the Wellman Center for Photomedicine at Massachusetts General Hospital and Harvard Medical School. Nanotechnol Rev. 2015;4:359–72.
Ge J, Lan M, Zhou B, Liu W, Guo L, Wang H, Jia Q, Niu G, Huang X, Zhou H, et al. A graphene quantum dot photodynamic therapy agent with high singlet oxygen generation. Nat Commun. 2014;5:4596.
Huang P, Lin J, Wang X, Wang Z, Zhang C, He M, Wang K, Chen F, Li Z, Shen G, et al. Light-triggered theranostics based on photosensitizer-conjugated carbon dots for simultaneous enhanced-fluorescence imaging and photodynamic therapy. Adv Mater. 2012;24:5104–10.
Sun S, Chen Q, Tang Z, Liu C, Li Z, Wu A, Lin H. Tumor microenvironment stimuli-responsive fluorescence imaging and synergistic cancer therapy by carbon-dot-Cu(2+) nanoassemblies. Angew Chem Int Ed Engl. 2020;59:21041–8.
Do TTA, Wicaksono K, Soendoro A, Imae T, Garcia-Celma MJ, Grijalvo S. Complexation nanoarchitectonics of carbon dots with doxorubicin toward photodynamic anti-cancer therapy. J Funct Biomater. 2022;13:219.
Kang YR, Park J, Jung SK, Chang YH. Synthesis, characterization, and functional properties of chlorophylls, pheophytins, and Zn-pheophytins. Food Chem. 2018;245:943–50.
Wen Y, Jia Q, Nan F, Zheng X, Liu W, Wu J, Ren H, Ge J, Wang P. Pheophytin derived near-infrared-light responsive carbon dot assembly as a new phototheranotic agent for bioimaging and photodynamic therapy. Chem Asian J. 2019;14:2162–8.
Yue J, Li L, Jiang C, Mei Q, Dong WF, Yan R. Riboflavin-based carbon dots with high singlet oxygen generation for photodynamic therapy. J Mater Chem B. 2021;9:7972–8.
Zhang L, Lin Z, Yu YX, Jiang BP, Shen XC. Multifunctional hyaluronic acid-derived carbon dots for self-targeted imaging-guided photodynamic therapy. J Mater Chem B. 2018;6:6534–43.
Yang Y, Ding H, Li Z, Tedesco AC, Bi H. carbon dots derived from tea polyphenols as photosensitizers for photodynamic therapy. Molecules. 2022;27:8627.
Pang W, Jiang P, Ding S, Bao Z, Wang N, Wang H, Qu J, Wang D, Gu B, Wei X. Nucleolus-targeted photodynamic anticancer therapy using renal-clearable carbon dots. Adv Healthc Mater. 2020;9: e2000607.
Cai Y, Liang P, Tang Q, Yang X, Si W, Huang W, Zhang Q, Dong X. Diketopyrrolopyrrole-triphenylamine organic nanoparticles as multifunctional reagents for photoacoustic imaging-guided photodynamic/photothermal synergistic tumor therapy. ACS Nano. 2017;11:1054–63.
He H, Zheng X, Liu S, Zheng M, Xie Z, Wang Y, Yu M, Shuai X. Diketopyrrolopyrrole-based carbon dots for photodynamic therapy. Nanoscale. 2018;10:10991–8.
Juzeniene A. Chlorin e6-based photosensitizers for photodynamic therapy and photodiagnosis. Photodiagn Photodyn Ther. 2009;6:94–6.
Beack S, Kong WH, Jung HS, Do IH, Han S, Kim H, Kim KS, Yun SH, Hahn SK. Photodynamic therapy of melanoma skin cancer using carbon dot—chlorin e6—hyaluronate conjugate. Acta Biomater. 2015;26:295–305.
Zöller M. CD44: can a cancer-initiating cell profit from an abundantly expressed molecule? Nat Rev Cancer. 2011;11:254–67.
Naskar N, Liu W, Qi H, Stumper A, Fischer S, Diemant T, Behm RJ, Kaiser U, Rau S, Weil T, Chakrabortty S. A carbon nanodot based near-infrared photosensitizer with a protein-ruthenium shell for low-power photodynamic applications. ACS Appl Mater Interfaces. 2022;14:48327–40.
Chen H, Zhang W, Zhu G, Xie J, Chen X. Rethinking cancer nanotheranostics. Nat Rev Mater. 2017;2:17024.
Dai Y, Xu C, Sun X, Chen X. Nanoparticle design strategies for enhanced anticancer therapy by exploiting the tumour microenvironment. Chem Soc Rev. 2017;46:3830–52.
Jia Q, Ge J, Liu W, Zheng X, Chen S, Wen Y, Zhang H, Wang P. A magnetofluorescent carbon dot assembly as an acidic H(2) O(2)-driven oxygenerator to regulate tumor hypoxia for simultaneous bimodal imaging and enhanced photodynamic therapy. Adv Mater. 2018;30: e1706090.
Chen S, Jia Q, Zheng X, Wen Y, Liu W, Zhang H, Ge J, Wang P. PEGylated carbon dot/MnO2 nanohybrid: a new pH/H2O2-driven, turn-on cancer nanotheranostics. Sci China Mater. 2018;61:1325–38.
Lan M, Guo L, Zhao S, Zhang Z, Jia Q, Yan L, Xia J, Zhang H, Wang P, Zhang W. Carbon dots as multifunctional phototheranostic agents for photoacoustic/fluorescence imaging and photothermal/photodynamic synergistic cancer therapy. Adv Ther. 2018;1:1800077.
Jia Q, Zheng X, Ge J, Liu W, Ren H, Chen S, Wen Y, Zhang H, Wu J, Wang P. Synthesis of carbon dots from Hypocrella bambusae for bimodel fluorescence/photoacoustic imaging-guided synergistic photodynamic/photothermal therapy of cancer. J Colloid Interface Sci. 2018;526:302–11.
Jia Q, Ge J, Liu W, Liu S, Niu G, Guo L, Zhang H, Wang P. Gold nanorod@silica-carbon dots as multifunctional phototheranostics for fluorescence and photoacoustic imaging-guided synergistic photodynamic/photothermal therapy. Nanoscale. 2016;8:13067–77.
Yang W, Wei B, Yang Z, Sheng L. Facile synthesis of novel carbon-dots/hemin nanoplatforms for synergistic photo-thermal and photo-dynamic therapies. J Inorg Biochem. 2019;193:166–72.
Li X, Vinothini K, Ramesh T, Rajan M, Ramu A. Combined photodynamic-chemotherapy investigation of cancer cells using carbon quantum dot-based drug carrier system. Drug Deliv. 2020;27:791–804.
Babič A, Herceg V, Bastien E, Lassalle HP, Bezdetnaya L, Lange N. 5-Aminolevulinic acid-squalene nanoassemblies for tumor photodetection and therapy. In vitro studies. Nanoscale Res Lett. 2018;13:10.
Geng B, Li P, Fang F, Shi W, Glowacki J, Pan D, Shen L. Antibacterial and osteogenic carbon quantum dots for regeneration of bone defects infected with multidrug-resistant bacteria. Carbon. 2021;184:375–85.
Verma A, Arshad F, Ahmad K, Goswami U, Samanta SK, Sahoo AK, Sk MP. Role of surface charge in enhancing antibacterial activity of fluorescent carbon dots. Nanotechnology. 2020;31: 095101.
Hao X, Huang L, Zhao C, Chen S, Lin W, Lin Y, Zhang L, Sun A, Miao C, Lin X, et al. Antibacterial activity of positively charged carbon quantum dots without detectable resistance for wound healing with mixed bacteria infection. Mater Sci Eng C Mater Biol Appl. 2021;123: 111971.
Zhao W-B, Wang R-T, Liu K-K, Du M-R, Wang Y, Wang Y-Q, Zhou R, Liang Y-C, Ma R-N, Sui L-Z, et al. Near-infrared carbon nanodots for effective identification and inactivation of Gram-positive bacteria. Nano Res. 2022;15:1699–708.
He D, Zhang X, Yao X, Yang Y. In vitro and in vivo highly effective antibacterial activity of carbon dots-modified TiO(2) nanorod arrays on titanium. Colloids Surf B Biointerfaces. 2022;211: 112318.
Qiao Y, Xu Y, Liu X, Zheng Y, Li B, Han Y, Li Z, Yeung KWK, Liang Y, Zhu S, et al. Microwave assisted antibacterial action of Garcinia nanoparticles on Gram-negative bacteria. Nat Commun. 2022;13:2461.
Song Y, Lu F, Li H, Wang H, Zhang M, Liu Y, Kang Z. Degradable carbon dots from cigarette smoking with broad-spectrum antimicrobial activities against drug-resistant bacteria. ACS Appl Bio Mater. 2018;1:1871–9.
Nie X, Wu S, Mensah A, Lu K, Wei Q. Carbon quantum dots embedded electrospun nanofibers for efficient antibacterial photodynamic inactivation. Mater Sci Eng C Mater Biol Appl. 2020;108: 110377.
Wang X, Lu Y, Hua K, Yang D, Yang Y. Iodine-doped carbon dots with inherent peroxidase catalytic activity for photocatalytic antibacterial and wound disinfection. Anal Bioanal Chem. 2021;413:1373–82.
Tejwan N, Saini AK, Sharma A, Singh TA, Kumar N, Das J. Metal-doped and hybrid carbon dots: a comprehensive review on their synthesis and biomedical applications. J Control Release. 2021;330:132–50.
Knoblauch R, Harvey A, Ra E, Greenberg KM, Lau J, Hawkins E, Geddes CD. Antimicrobial carbon nanodots: photodynamic inactivation and dark antimicrobial effects on bacteria by brominated carbon nanodots. Nanoscale. 2021;13:85–99.
Rtimi S, Dionysiou DD, Pillai SC, Kiwi J. Advances in catalytic/photocatalytic bacterial inactivation by nano Ag and Cu coated surfaces and medical devices. Appl Catal B. 2019;240:291–318.
Ray SK, Dhakal D, Kshetri YK, Lee SW. Cu-α-NiMoO4 photocatalyst for degradation of Methylene blue with pathways and antibacterial performance. J Photochem Photobiol, A. 2017;348:18–32.
Nichols F, Lu JE, Mercado R, Rojas-Andrade MD, Ning S, Azhar Z, Sandhu J, Cazares R, Saltikov C, Chen S. Antibacterial activity of nitrogen-doped carbon dots enhanced by atomic dispersion of copper. Langmuir. 2020;36:11629–36.
Cheng K, Wang H, Sun S, Wu M, Shen H, Chen K, Zhang Z, Li S, Lin H. Specific chemiluminescence imaging and enhanced photodynamic therapy of bacterial infections by hemin-modified carbon dots. Small. 2023;19: e2207868.
Abu Rabe DI, Al Awak MM, Yang F, Okonjo PA, Dong X, Teisl LR, Wang P, Tang Y, Pan N, Sun YP, Yang L. The dominant role of surface functionalization in carbon dots’ photo-activated antibacterial activity. Int J Nanomed. 2019;14:2655–65.
Liu W, Wu B, Sun W, Liu W, Gu H, Du J, Fan J, Peng X. Near-infrared II fluorescent carbon dots for differential imaging of drug-resistant bacteria and dynamic monitoring of immune system defense against bacterial infection in vivo. Chem Eng J. 2023;471: 144530.
Qiao Z, Yao Y, Song S, Yin M, Yang M, Yan D, Yang L, Luo J. Gold nanorods with surface charge-switchable activities for enhanced photothermal killing of bacteria and eradication of biofilm. J Mater Chem B. 2020;8:3138–49.
Li X, Bai H, Yang Y, Yoon J, Wang S, Zhang X. Supramolecular antibacterial materials for combatting antibiotic resistance. Adv Mater. 2019;31: e1805092.
Dong A, Xiao W, Yuan W, Zuo K. Self-healable and injectable nanocomposite hydrogel loading iron-doped carbon dots for synergistic antibacterial peptide-photothermal-photodynamic antibacterial therapy. ACS Appl Polym Mater. 2023;5:9564–73.
de Oliveira EF, Tosati JV, Tikekar RV, Monteiro AR, Nitin N. Antimicrobial activity of curcumin in combination with light against Escherichia coli O157:H7 and Listeria innocua: applications for fresh produce sanitation. Postharvest Biol Technol. 2018;137:86–94.
Hu J, Lin S, Tan BK, Hamzah SS, Lin Y, Kong Z, Zhang Y, Zheng B, Zeng S. Photodynamic inactivation of Burkholderia cepacia by curcumin in combination with EDTA. Food Res Int. 2018;111:265–71.
Chen B, Huang J, Li H, Zeng Q-H, Wang JJ, Liu H, Pan Y, Zhao Y. Eradication of planktonic Vibrio parahaemolyticus and its sessile biofilm by curcumin-mediated photodynamic inactivation. Food Control. 2020;113: 107181.
Yan H, Zhang B, Zhang Y, Su R, Li P, Su W. Fluorescent carbon dot-curcumin nanocomposites for remarkable antibacterial activity with synergistic photodynamic and photothermal abilities. ACS Appl Bio Mater. 2021;4:6703–18.
Pobłocki K, Drzeżdżon J, Kostrzewa T, Jacewicz D. Coordination complexes as a new generation photosensitizer for photodynamic anticancer therapy. Int J Mol Sci. 2021;22:8052.
Chen D, Yu Q, Huang X, Dai H, Luo T, Shao J, Chen P, Chen J, Huang W, Dong X. A highly-efficient type I photosensitizer with robust vascular-disruption activity for hypoxic-and-metastatic tumor specific photodynamic therapy. Small. 2020;16:2001059.
Liu Y, Xu B, Lu M, Li S, Guo J, Chen F, Xiong X, Yin Z, Liu H, Zhou D. Ultrasmall Fe-doped carbon dots nanozymes for photoenhanced antibacterial therapy and wound healing. Bioact Mater. 2022;12:246–56.
Yan Y, Chen B, Wang Z, Yin Q, Wang Y, Wan F, Mo Y, Xu B, Zhang Q, Wang S, Wang Y. Sequential modulations of tumor vasculature and stromal barriers augment the active targeting efficacy of antibody-modified nanophotosensitizer in desmoplastic ovarian carcinoma. Adv Sci (Weinh). 2021;8:2002253.
Mendes BB, Sousa DP, Conniot J, Conde J. Nanomedicine-based strategies to target and modulate the tumor microenvironment. Trends Cancer. 2021;7:847–62.
Jiang F, Lee C, Zhang W, Jiang W, Cao Z, Chong HB, Yang W, Zhan S, Li J, Teng Y, et al. Radiodynamic therapy with CsI(na)@MgO nanoparticles and 5-aminolevulinic acid. J Nanobiotechnol. 2022;20:330.
Abu Lila AS, Doi Y, Nakamura K, Ishida T, Kiwada H. Sequential administration with oxaliplatin-containing PEG-coated cationic liposomes promotes a significant delivery of subsequent dose into murine solid tumor. J Control Release. 2010;142:167–73.
He C, Hu Y, Yin L, Tang C, Yin C. Effects of particle size and surface charge on cellular uptake and biodistribution of polymeric nanoparticles. Biomaterials. 2010;31:3657–66.
Wang H-X, Zuo Z-Q, Du J-Z, Wang Y-C, Sun R, Cao Z-T, Ye X-D, Wang J-L, Leong KW, Wang J. Surface charge critically affects tumor penetration and therapeutic efficacy of cancer nanomedicines. Nano Today. 2016;11:133–44.
Huang X, Zhang F, Zhu L, Choi KY, Guo N, Guo J, Tackett K, Anilkumar P, Liu G, Quan Q, et al. Effect of injection routes on the biodistribution, clearance, and tumor uptake of carbon dots. ACS Nano. 2013;7:5684–93.
Jian HJ, Wu RS, Lin TY, Li YJ, Lin HJ, Harroun SG, Lai JY, Huang CC. Super-cationic carbon quantum dots synthesized from spermidine as an eye drop formulation for topical treatment of bacterial keratitis. ACS Nano. 2017;11:6703–16.
Wu X, Abbas K, Yang Y, Li Z, Tedesco AC, Bi H. Photodynamic anti-bacteria by carbon dots and their nano-composites. Pharmaceuticals (Basel). 2022. https://doi.org/10.3390/ph15040487.